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Abstract— We present an approach to interpret parame-
terized policies through the lens of Signal Temporal Logic
(STL). By providing a formally-specified description of desired
behaviors we want the policy to produce, we can identify
clusters in the parameter space of the policy that can produce
the desired behavior. In the context of agent simulation for
autonomous driving, this enables an automated way to target
and produce challenging scenarios to stress-test the autonomous
driving stack and hence accelerate validation and testing. Our
approach leverages parametric signal temporal logic (pSTL)
formulas to construct an interpretable view on the modeling
parameters via a sequence of variational inference problems;
one to solve for the pSTL parameters and another to construct a
new parameterization satisfying the specification. We perform
clustering on the new parameter space using a finite set of
examples, either real or simulated, and combine computational
graph learning and normalizing flows to form a relationship
between these parameters and pSTL formulas either derived
by hand or inferred from data. We illustrate the utility of
our approach to model selection for validation of the safety
properties of an autonomous driving system, using a learned
generative model of the surrounding agents.

I. INTRODUCTION

Simulating the behavior of agents used for testing and
development of automated vehicles often requires the use
of a policy, a mapping from the states of the vehicle
and its surrounding environment to the control actions for
the vehicle, that controls the behavior of those agents. In
order to specify certain desirable behaviors, policies may
be parameterized. A user of a policy, for instance, may
wish to produce a style of behavior or evoke a certain
outcome upon interacting with the environment. For instance,
a developer of an autonomous driving policy may wish
to generate a suite of challenging driving scenarios in a
simulation environment in order to stress test the driving
policy and evaluate its performance. Thus, a challenge is
in quantifying a relationship between parameters of data-
driven policies and the emergent behaviors from deploying
that policy.

For safety-critical systems, such as for autonomous cars,
it is important to quantify the relationship between the
parameters of a policy and the resulting behaviors of using
that policy because it can (i) help with the verification of
data-driven policies [1], [2] which is currently a bottleneck
in the wide-spread adoption of learning-based components in
safety-critical systems, (ii) provide interpretability and thus
transparency which can potentially improve performance
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Fig. 1: Our running example: controlling the behavior of an agent
via a learned parameterized policy. An interpretable parameteriza-
tion allows one to tailor the learned driver behavior model according
to outcomes as experienced by a vehicle behind it.

of downstream applications such as decision-making and
control, and (iii) provide a quantitative handle on the types
of behaviors that can emerge and use it to “tune” desired
behaviors which are useful for scenario generation when
validating an autonomous agent [3], [4].

Consider, for example, a driving scenario shown in Fig. 1,
where we assume the car in front (in red) is running a data-
driven parameterized policy whose behavior style may be
adjusted via a vector of bounded parameters, and the ego car
(in green) is running a fixed policy whose performance we
would like to evaluate when interacting with other vehicles.
To characterize the parameters of the parameterized policy,
one must observe the interactions that play out and obtain
a mapping between the parameters and a measure of such
outcomes. This is a straightforward task when the outcomes
are simply defined (e.g. single-agent scenarios described
by simple dynamics and goals). However, the problem be-
comes more challenging when outcomes are described by
a complex logical specification with incomplete knowledge.
For instance, if we request parameterizations that produce
“worst-case” drivers as defined by a template specification
shown in Fig. 1, the concrete specification may not be
known until placed in the context of a dataset of driver
interactions. The process of finding such mapping, i.e.,
executing the policy and measuring the outcome, is typically
expensive, even for simulation environments. Though having
this mapping can widen the bottleneck in the verification
and validation of robotic systems such as autonomous cars,
because more challenging, or rare, scenarios can now be
generated automatically.

To quantitatively characterize a relationship between pa-
rameters of a parameterized policy and resulting behaviors



from running that policy in a computationally efficient way,
we adopt variational inference to connect the policy’s pa-
rameters to parametric signal temporal logic (pSTL) formulas
[5], [6]. In so doing, the formulas mathematically express the
behaviors we strive to evoke. Signal temporal logic (STL) is
a temporal logic that is specified over dense-time real-valued
signals, such as time-series data produced from continuous
and hybrid systems. STL provides a concise language to
construct specifications (i.e., formulas) that describe relation-
ships between the spatial (e.g., states of a robotic system)
and temporal properties of a signal. pSTL is a parametric
extension of STL where the parameters of the STL formula
are unknown and need to be determined from input signals,
and can be used as a form of feature extraction for time-
series data [7].

Related work: The problem of constructing interpretable
views and formally-specifiable models has ties to ongoing
work within machine learning and formal methods. In cre-
ating policy models that achieve a given objective, several
learning-based approaches exist. For instance, variational au-
toencoders (VAE) and conditional VAE (cVAE) have proven
successful to applications of multi-agent imitation learning
with compact parameter representations, e.g. [8], [9]. Where
there exists a well-defined terminal goal or outcome, rein-
forcement learning techniques have been employed to con-
figure agents that achieve certain goals [10]. Such goals can
be made more expressive by leveraging temporal logics [11],
and symbolic abstractions that can be learned [12]. However,
it is in general difficult to configure policies that generate
certain time-series properties through rewards and, moreover,
goal adherence often comes at the expense of reconstruction
(e.g., imitation learning).

Within the context of latent models, the concept of dis-
entangelement [13], [14] has become a popular means to
enforce a direct relationship between metrics and latent
variable models. Techniques such as [15] provide semantic
meaning in the latent structure using unsupervised learning.
The compactness of the representation and ability to seman-
tically cluster the behavior of a deep network model is useful
when a metric exists, but inferring such metrics from data
while respecting some logical formula remains a challenge.

Bridging metrics with an expressive set of logical spec-
ifications is a well-studied area. In particular, [16] studies
computation graph learning over fixed predicates, and use
formula robustness, describing the degree to which a property
is satisfied, to guide the search of a decision tree that fits
features of a set of measured traces. The work of [17]
exploits logical structure of a problem to inform testing of
a given cyber-physical system. In [18], the authors propose
an approach to infer temporal logic formulas and impose a
tightness requirement to learned predicates that precisely fit
features of a corpus of time-series data. [19] introduces a
technique that allows construction of sparse formulas in a
semi-supervised manner where it is assumed an oracle can
provide positive or negative labels. The work of [20] use
time-series analysis to perform logical clustering over a set
of observed time traces. While the above works set the stage

for using logical structure in the data to learn representations,
there are often some simplifying assumptions on the types
of abstractions used to perform clustering (i.e. hyperboxes
or ellipsoids) and fall short of enhancing interpretability of
policies.

Perhaps the closest work to ours is that of [7], where the
authors learn the parameters of a temporal logic specification
to perform clustering. Our work differs in two respects. First,
rather than learning formulas under strict semantic interpreta-
tions, we focus on the problem of interpreting policies under
a variational inference scheme to yield more expressive prob-
abilistic interpretations of the policies. Second, our approach
uses backpropagation to train the predicates directly, rather
than training box-constraints on the satisfying predicates,
which may be limiting.

Statement of contributions: In this paper, we address the
problem of policy interpretability. We introduce a means
for clustering a given dataset using pSTL formulas with
parameters under a given fixed policy. Using our approach,
one can generate specific outcomes of a policy where such
examples exist and are supported by actual observed out-
comes of the policy, either from data or simulation. The
specific contributions are the following.

1) A variational inference approach for learning parame-
ters of pSTL formulas.

2) Proposals for several optimization criteria for specify-
ing the desired semantics for the learned predicates.

3) A demonstration of the approach in the setting of
policy interpretation for parameterized policies for
behavior modeling in driving scenarios, in which the
goal is to expose parameters that allow configuration of
agents to achieve some formally-specifiable outcome.

We envision utility in a wide array of contexts. In motion
planning, an interpretable view may be useful in providing
a mechanism to select learned policies; in social contexts, it
may be used to determine legibility of a given motion plan,
or inferring the intent of multiple agents.

II. BACKGROUND

We provide background on the policies we consider and
the underpinning logical formalism we adopt, parametric
signal temporal logic.

A. Parameterized Policies
In this section, we outline a general definition of a param-

eterized policy. We define a dynamics model of a system
to be a mapping from state-action pairs to next states, i.e.
X × U 7→ X , where X ⊆ Rnx is a set of states and
U ⊆ Rnu is a set of actions. We further define Y ⊆ Rny to
be a set of observations of the environment (external to the
system). Given a value s ∈ X × Y , we define a time trace
(or trajectory) of states and observations as ξt = s0s1s2...st,
where t is the current time step. Letting z ∈ Z ⊂ Rnz denote
a vector of parameters, we define a parameterized policy as
the distribution over actions at timestep t; p(at | ξtx, ξty, z),
with at ∈ U .

As noted, cVAE are a popular choice for policy models [8],
[21]. In a cVAE, both the policy p(at | ξtx, ξty, z), referred to



as a decoder, and the posterior q(z | ξtx, ξty), referred to as
an encoder, are trained simultaneously to ensure a compact
representation in which z can be inferred from a history of
traces ξtx and ξty . Here, q(z | ξtx, ξty) provides a measure of
the likelihood of a parameter given the prediction and the
context of its environment is expected to be encountered,
while the likelihood p(at | ξtx, ξty, z) informs the confidence
of the prediction under the parameterization and environ-
ment. Often, we assume the conditional distributions to be
Gaussian, with the mean and variance represented by the
nonlinear mappings X t × Yt 7→θµ U and X t × Yt 7→θσ U ,
respectively, where θµ and θσ are neural network weights.
The latent representation is useful for sample efficiency and
lends to interpretability when the dimension of z is small.
While interpretation of z can often be found by clustering,
e.g. according to semantics [9], the objective of this work
is to make such policies more guided, more principled, and
human-understandable through the lens of temporal logic.

As we detail in Sec. IV, while our formulation supports
q(z | ξtx, ξty) when available, it is not strictly required;
e.g. analytically-derived policies such as ordinary differential
equations parameterized by lookup tables. Also, note that
policies on actions are not limiting. Without loss of general-
ity, we may subsume dynamics and adopt the same approach
to policies of the form p(xt+1 | ξtx, ξty, z), with xt+1 ∈ X ,
the state at timestep t+ 1.

B. Parameterizable Temporal Logics

To make the policies introduced above interpretable by a
human, we introduce the parametric extension of STL.

Definition II.1 (Parametric Signal Temporal Logic). Para-
metric STL (pSTL) formulas are defined recursively as fol-
lows:

ϕ ::= > | µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | �[a,b]ϕ | ϕ U[a,b]ψ

where µ is an atomic predicate, whose truth value is deter-
mined by the inequality µ(s) < c, for some parameter c, and
ϕ is an STL formula. We write ϕc to denote a pSTL formula
parameterized by some vector c. A trace ξT = s0s1s2...sT
satisfies ϕc if ξT satisfies ϕc at time t = 0. In other words,
ξT satisfies �[a,b]ϕ if ϕ holds at every time step between a
and b, and ξT satisfies ϕU[a,b]ψ if, between time steps a and
b, ϕ is true at every time step up to some step when ψ holds.
Additionally, let ♦[a,b]ϕ := >U[a,b]ϕ, such that ξT satisfies
♦[a,b]ϕ if ϕ is true at some time step between a and b.

The predicates are assumed to be of the form µ(ξT ) ./ c,
with ./∈ {≤,≥,=}. In this work, we adopt the quantitative
semantics of pSTL, wherein, for a given formula ϕc, each
trace of length T admits a robustness value ρϕc : RT ×
R≥0 7→ R, as follows.
• ρϕc(ξ

T , t) ≥ 0 if ξT satisfies ϕc at time t, and
• ρϕc(ξ

T , t) < 0 if ξT does not satisfy ϕc at time t.
For a given STL formula, the robustness value is calculated
by recursion on the parse tree of the formula as follows:

ρ>(ξT , t) = ρmax

ρµ(st)≤c(ξ
T , t) = c− µ(st)

ρϕc∧ψc′ (ξ
T , t) = min(ρϕc(ξ

T , t), ρψc′ (ξ
T , t))

ρϕc∨ψc′ (ξ
T , t) = max(ρϕc(ξ

T , t), ρψc′ (ξ
T , t))

ρ♦[a,b]ϕc(ξ
T , t) = max

t′∈[t+a,t+b]
ρϕc(ξ

T , t′)

ρ�[a,b]ϕc(ξ
T , t) = min

t′∈[t+a,t+b]
ρϕc(ξ

T , t′)

ρϕc U[a,b] ψc′ (ξ
T , t) =

max
t′∈[t+a,t+b]

(min(ρψc′ (ξ
T , t′), min

t′′∈[0,t′]
ρϕc(ξ

T , t′′)))

Definitions corresponding to the operators “=”, “≥” and
“⇒” can be constructed accordingly. For brevity, we use the
shorthand ρc(ξT ) := ρϕc(ξ

T , 0).

III. PROBLEM STATEMENT

We are concerned with instantiating parameterized policies
that interact with an environment involving possibly many
different agents. Due to the causal nature of the execution
of a policy, it is not always clear what the outcome of a
given parameterization will be. For instance, in the running
example of Fig. 1, different behaviors and driving styles
may emerge with different parameterizations of a given
driving policy. However, there may be no easy way to select
these parameters allowing for exploration of the spectrum
between “easy” and “challenging” cases from the perspective
of the vehicle behind. However, we may be able to observe
interactions in data and infer the parameters of a formal
specification to best match a user’s interpretation of “easy” or
“challenging” cases to actual observed outcomes from data.

More precisely, we posit that a pSTL specification ϕc,
referred to as a pSTL template, is both human-interpretable
and able to encode desirable characteristics of a signal. Our
goal is to: (1) learn parameters of ϕc yielding clusters of z
that best fit the data, and (2) use the learned specification
to construct an interpretable parameterization ẑ ∈ Ẑ whose
parameters are commensurate with satisfaction of ϕc. A fixed
policy can have several interpretations. As such, we call this
approach an interpretable view on a parameterized policy.

IV. INTERPRETABLE VIEWS ON POLICIES

Given a pSTL formula parameterized by c, we infer c
under a given policy and data corpus. Consider a dataset
of trajectories D = {ξT0

0 , . . . , ξTNN } produced by a policy
in a particular multi-agent environment. Our goal is to find
a set of parameters for a given pSTL template that best
characterizes D with respect to the logical structure provided
by the template. The approach is outlined in Fig. 2.

A. Variational Inference

Since the problem of inferring c is intractable to solve in
general, we draw upon variational inference [22]. We discuss
the case where a policy exists in latent variable form, i.e.
where both p(at | ξt, z) and q(z | ξt) are given (e.g. cVAE),
then discuss the standard form where only p(at | ξt, z) is
given (e.g. z are hyperparameters).

Suppose we are given a batch of trajectories ξ (batch size
N ), and the conditional distribution q(z | ξ), where z is



Fig. 2: Overview of the interpretable policy parameterization scheme.

an nz-dimensional batch of modeling parameters (also of
batch size N ). As a step towards performing inference on
c given the entire dataset, rather than independently over
each trajectory, we form a joint multivariate distribution
conditioned on D, and write q(Z | D) to emphasize that this
distribution is joint over all elements of a parameter array
Z ∈ Rnz×N constructed from z, not the batches themselves.
We further exploit independence so that q(Z|D) =

∏
i q(Z |

ξTii ). Our objective is to find an estimate q(c | D) of the true
posterior p(c | D) of pSTL parameters c via

DKL [q(c | D) ‖ p(c | D)]

=

∫
q(c | D) log

q(c | D)p(D)

p(c,D)
dc

=

∫
Eq(Z|D)q(c | Z) log

Eq(Z|D)q(c | Z)p(D)

p(D | c)p(c)
dc

≥ Eq(c|D)

[
log

Eq(Z|D)q(c | Z)

p(c)
− log p(D | c)

]
= DKL

[
Eq(Z|D)q(c | Z)

∥∥ p(c)]
− Eq(c|D) log p(D | c) (1)

where p(D) is the true (unknown) distribution of the data,
hence the introduction of the inequality. The expectation
appearing within the KL-divergence is approximated using
Monte Carlo sampling. Hence, we use Z ∈ Rnz×N×nmc
to denote a batch constructed of Monte Carlo samples to
approximate the expectation over q(Z | D).

The expression on the right hand side of the inequality
is commonly referred to as the evidence lower bound, or
ELBO. We assume the conditional distributions are normally
distributed with mean and variance given by neural networks.
Hence, to construct the Monte Carlo approximation, we
generate the samples via the reparameterization trick using
the provided mean and variance outputs of the networks.
The choice of distribution for the prior p(c) is a design
assumption; we found that using a standard Normal yielded
good results. The likelihood p(D | c) is discussed in the next
section.

It is well-known that the ELBO in (1) suffers from ap-
proximation errors, due to the Gaussian distribution assumed

in the conditional distributions. Thus, we adopt normalizing
flows to enrich the distributions. Normalizing flows are
invertible, distribution-preserving transformations that enable
representation of a rich set of distributions. In similar fashion
to [23], we let ci denote the output of the ith layer of the
flow fi, and treat c0 as the input and c = cK as the final
layer of a sequence of K flows.

Equation (1) may then then re-written as:

DKL
[
Eq(Z|D)q(c0 | Z)

∥∥ p(cK)
]
− Eq(c0|D) log p(D | cK)

+ Eq(c0|D)

[
log

K∏
t=1

∣∣∣∣det
∂ft
∂ft−1

∣∣∣∣
]

(2)

which gives an arbitrarily rich distributional representa-
tion of the ELBO. We choose inverse autoregressive flows
(IAF) [24] within the inference scheme to improve the
expressive power of each introduced transformation layer.

For policies not in variational form and lacking an en-
coder, one may train (2) directly on traces by replacing
Eq(Z|D)q(c0 | Z) with q(c0 | D) and using a recurrent
structure similar to standard trajectory-based cVAEs.

B. pSTL Semantics via Likelihood Tailoring

The likelihood term p(D | c) describes a criterion we
wish to assert in order to establish concrete semantics. As
with existing data clustering problems, there exist a number
of possible approaches. Below we outline two approaches,
which have commonly-used analogs in standard data analy-
sis, for interpreting a given dataset.

• Discriminative Clustering. A discriminative cluster-
ing model seeks a description that best distinguishes
between two types of data traces. In similar fashion
to binary classification, the objective is to obtain a
pSTL formula whose parameterization minimizes the
mean square error of the robustness values across the
population. To cast this problem into the probabilistic
setting, we use a softmax likelihood, i.e.

p(ξi | c) =
exp(−ρ2

c(ξi)/τ)∑
i exp(−ρ2

c(ξi)/τ)



where τ is a softness parameter. The choice provides a
semantic for best discriminator between satisfying and
non-satisfying examples under the template.

• Absolute Clustering. This type of model seeks to
cluster together common traits shared among a set of
traces. The likelihood is modeled by

p(ξi | c) =
exp(L(ξi)/τ)∑
i exp(L(ξi)/τ)

where L(ξ) = (1 + ρc(ξ)) |ρc(ξ)|+ρc(ξ)2 is a modified
hinge loss. That is, those data that satisfy the formula
are given priority over those that do not, and those
that do are made to be only marginally satisfied. The
loss improves as formulas are discovered that collect
more marginally-satisfiable data. Such models can give
a semantic for best marginal fit of satisfying examples
under the template.

In both cases, we assume that likelihoods are independent for
each trace, such that jointly we have p(D | c) =

∏
i p(ξi | c).

Notice that, given the same dataset, the semantics of each
are different. The purpose of the discriminative model is
to form a logical relationship to the data that minimizes
the differences in robustness values over the population of
traces. The absolute clustering model, on the other hand, is
a regression problem; it constructs a logical relationship that
maximizes the number of marginally-robust examples.

C. Training Procedure

To capture the discrete nature of the formula learning
problem, we solve the variational inference approach using
backpropagation. As in previous works [25], [26], we use
the softmax/softmin trick in order to cast the pSTL formulas
as smooth, differentiable functions over the parameters c.
During training, we anneal both the softness parameter and
the weighting between reconstruction and KL divergence in
the loss function to prevent degeneracy.

D. Interpretable Views on Latent Encodings

Transforming the existing policy parameter space Z into
an interpretable space under the learned formula requires
solving an additional inference problem. Similar to [13], we
use distribution-preserving normalizing flows to construct a
mapping between z and ẑ. We learn flows that map the
modeling parameters z to some space ẑ, constrained to have
a linear mapping to the robustness value ρc(ξ) (see Fig. 2).

We choose the following objective:

DKL [q(z0 | z,m) ‖ p(zK′)]− Eq(z0|z) log p(z | zK′) (3)

− Eq(z0|z) log p(m | zK′) + Eq(z0|z)

log

K′∏
t=1

∣∣∣∣det
∂ft
∂ft−1

∣∣∣∣


where we define the interpretability metric m =
tanh(ρc(ξ)), and where the mean and variance of p(m |
zK′) are fully-connected linear layers. We find planar flows
to be sufficient to performing inference. For vector-valued
metrics, we wish to form linear relationships between each
element of the vector and individual elements of the new
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Fig. 3: Latent space with interpretability metric corresponding to the
learned formula in Table I. To highlight the multi-modality of the
clustering problem, a support vector regression on the robustness
values is shown via the colored background.

TABLE I: Learned pSTL parameters for the cVAE.

c∆x c∆ẋ cẍ ĉ∆x ĉ∆ẋ ĉẍ
91.36 -2.31 -3.08 -3.75 -10.63 0.1981

parameter space by training individual, hence independent,
linear decoder layers for each metric.

It is useful to point out that solving (2) provides a
clustering of the policy parameter space according to the
formula, while the interpretable view in (3) provides a
selection mechanism for parameters, as depicted in Fig. 2.
Note that since the data we source is incomplete and possibly
changes with different interactions with the environment, the
parameterization is only locally valid in the neighborhood of
the data we train on.

V. CASE STUDY: AGENT BEHAVIOR MODELING

We examine the case of simulating driver behavior, where
the use case can be intent prediction, simulation, and vali-
dation of an autonomous ego car interacting with different
styles of drivers. We consider these agents to be human-
driven vehicles driving in tandem, as pictured in Fig. 1.

A. Agent Policy
We use the Argoverse dataset [27] to build a behavior

model of longitudinal behaviors, a policy taking in features
and conditioning variables and producing acceleration as an
output. We train a long short-term memory (LSTM) encoder
and decoder as a cVAE with the position and velocity of the
car ahead treated as features x, and the position and velocity
of the car behind treated as the conditioning variables y. We
model the driver’s style using a two-dimensional latent vector
z. The decoder LSTM transforms x, y, z into deterministic
acceleration commands. The future states are determined by
a point-mass model approximating the car’s physics.

In training the cVAE, we harvest data that only produces
in-lane examples where there exists a vehicle ahead. Since
the formula propositions require position, velocity and accel-
erations of both cars, we use a Kalman smoother to compute
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Fig. 4: Left: the interpretable parameterization, where the parameter ẑ0 clearly can be used to adjust the style of the behavior according
to the severe-benign pair of formulas. Right: The progression of trajectories realized when adjusting ẑ0.

the derivatives from positional data, before transforming each
trace into the lane-relative reference frame of the ego car.

B. Construction of a Policy Selection Mechanism

We next synthesize an interpretable view from a pSTL
formula to construct a new, compact parameterization where
individual parameters are made to allow for adjustment of
increasing or decreasing satisfaction of the formula. This
can be useful, for instance, in validation of an autonomous
driving system, where it is often important to stress-test the
autonomy against more- or less-difficult agents. Our metric
is constructed from a pair of STL declarative specifications
defining outcomes where the interaction with the vehicle
behind are deemed most or least severe:

Severe: ♦(∆x ≤ c∆x) ∧ ♦(∆ẋ ≤ c∆ẋ) ∧ ♦(ẍlead ≤ cẍ)
Benign: �(∆x ≥ ĉ∆x) ∧�(∆ẋ ≥ ĉ∆ẋ) ∧�(ẍlead ≥ ĉẍ)

where ∆x = xlead − xtrailing is the distance between vehi-
cles, ∆ẋ = ẋlead − ẋtrailing is the relative speed, and ẍlead
is the lead vehicle’s acceleration. The first formula describes
a preference for obtaining collisions or near-collisions that
that the driver in back could possibly have avoided. That
is, it requires the lead car to have had experienced a sharp
deceleration, but at some other point there was also a sig-
nificant difference in speeds. The second formula describes
the opposite behavior – behaviors which we consider benign;
i.e. where the distance, relative speeds, and accelerations are
always kept high. Note that the benign formula is a stronger
requirement than the negation of the severe formula, and
hence yields a well-defined, compact clustering of behaviors.

pSTL parameter learning: We train the pSTL parameters
over the same dataset used to train the cVAE. To be able to
form a regression from one formula to the other, we adopt
the metric m = exp(ρsevere(ξ))− exp(ρbenign(ξ)), and assign
ẑ0 to this metric, reserving ẑ1 to represent behaviors that
have not been expressed by the formula.

We use the tool stlcg for differentiable pSTL compu-
tation graph learning described in [25]. For the parameter
inference model, we use a 16-dimensional encoder with three
fully-connected layers and tanh activations. We use five IAF
layers for the clustering model. Within the inference network,
we use 50 Monte Carlo samples for expectation estimation.

The learned pSTL parameters are shown in Table I. These
are chosen as the empirical maximum likelihood values. In
the plot of the original parameterization in Fig. 3, it is clear
that there exists pockets of greater and lower severity of the
model throughout the latent space.

Interpretable view learning: We construct an interpretable
view using a composition of 15 planar flows to provide a
two-dimensional mapping ẑ = (ẑ0, ẑ1)T 7→ z. For both
the encoder and decoder for the latent variables, three 16-
dimensional fully-connected tanh layers are used. In Fig. 4,
the metric associated with the pair of formulas is seen to
align with the ẑ0-axis, producing a new parameterization that
offers the progression of trajectories that span from benign
to severe as the principal axis ẑ0 is adjusted.

C. Discriminative Clustering

To illustrate the utility of fitting explanations between
relative differences in behaviors, we introduce a formula that
discriminates between different types of agent behavior. In
this example, we choose a formula characterizing the agent’s
acceleration, and apply it to create sub-clusters only to those
behaviors already clustered in the benign category:

�(ẍlead ≤ c̃accel)

The formula separates examples that have demonstrated
consistent deceleration from those that may have accelerated
at some point along the trace. We form an interpretable
view using both the metric from Sec. V-B and the one
learned here to form a parameter axis allowing progression
from severe to benign with �(ẍlead ≤ c̃accel) and, on
the other axis, a progression from severe to benign with
¬�(ẍlead ≤ c̃accel) = ♦(ẍlead > c̃accel). The resulting
parameter set is two-dimensional z̃ = (z̃0, z̃1)T .

The corresponding behaviors shown in Fig. 5 illustrate
the resulting trajectories for each case. Clearly the two cases
show different speed profiles, and these can be configured
independently with z̃0 and z̃1.

VI. CONCLUSIONS

We address the problem of making policies more transpar-
ent and configurable to a user by constructing an interpretable
view that follows a user’s formal specification, and learning



�(ẍlead ≤ c̃accel) ∧ benign

severe

♦(ẍlead > c̃accel) ∧ benign

severe

Fig. 5: A discriminative view constructed only on benign styles using the acceleration-discriminating formula, with the left-hand pane
showing trajectories were created by adjusting interpretable parameter z̃0 and right-hand pane trajectories obtained by adjusting z̃1.

a new parameterization that best matches outcomes revealed
in a corpus of data. Our proposed approach is applicable
to general data-driven policies where upon interacting with
an environment, we are interested in the resulting spatial
and temporal properties. As demonstrated with our case
study, we find that this approach is particularly beneficial
for scenario generation in the testing and validation of
autonomous driving policies in simulation, but may also be
useful for on-line intent prediction and social awareness.

Future work includes performing inference over the logi-
cal structure of formulas, and learning over integer-valued
parameters. Currently, the challenge of learning formulas
from data that are sufficiently expressive while remaining
interpretable to humans is an interesting topic that should be
further explored. Such tradeoffs are practically interesting in
multi-agent settings.
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