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Abstract In the near future mobile robots, such as personal
robots or mobile manipulators, will share the workspace with
other robots and humans. We present a method for mission
and motion planning that applies to small teams of robots
performing a task in an environment with moving obstacles,
such as humans. Given a mission specification written in
Linear Temporal Logic, such as patrolling a set of rooms,
we synthesize an automaton from which the robots can ex-
tract valid strategies. This centralized automaton is executed
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by the robots at runtime in conjunction with a distributed
motion planner that guarantees avoidance of moving obsta-
cles. Our contribution is a correct-by-construction synthe-
sis approach to multi-robot mission planning that guarantees
collision avoidance with respect to moving obstacles, guar-
antees satisfaction of the mission specification and resolves
encountered deadlocks, where a moving obstacle blocks the
robot temporally.

Our method provides conditions under which deadlock
will be avoided by identifying environment behaviors that,
when encountered at runtime, may prevent the robot team
from achieving its goals. In particular, it i) identifies dead-
lock conditions; ii) is able to check whether they can be re-
solved; and iii) the robots implement the deadlock resolution
policy locally in a distributed manner. The approach is ca-
pable of synthesizing and executing plans even with a high
density of dynamic obstacles. In contrast to many existing
approaches to mission and motion planning, it is scalable
with the number of moving obstacles. We demonstrate the
approach in physical experiments with walking humanoids
moving in 2D environments and in simulation with aerial ve-
hicles (quadrotors) navigating in 2D and 3D environments.

Keywords Multi-robot systems · Formal Methods ·
Mission Specification · Motion Planning · Deadlock
Resolution · Dynamic Environments

1 Introduction

Mobile robots, such as package delivery robots, personal
assistants, surveillance robots, cleaning robots, mobile ma-
nipulators or autonomous cars, execute possibly complex
tasks and must share their workspace with other robots and
humans. For example, consider the case shown in Fig. 1
in which two mobile robots are tasked with patrolling and
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cleaning the rooms of a museum. What makes this task chal-
lenging is that the environment in which the robots operate
could be filled with static obstacles, as well as dynamic ob-
stacles, such as people or doors, that could lead to collisions
or block the robot. To guarantee the task of continuously
monitoring all the rooms, each robot must react to the envi-
ronment at runtime in a way that does not prevent making
progress toward fulfilling the overall mission. In particular,
we describe an approach for navigation in dynamic environ-
ments that is able to satisfy a mission by resolving dead-
locks, i.e. situations where a robot is temporally blocked
by a dynamic obstacle and can not make progress towards
achieving its mission, at runtime.

Planning for multi-agent systems has been explored ex-
tensively in the past. Many have focused on approaches for
local motion planning [1, 6] that offer collision avoidance
in cluttered, dynamic environments. While these approaches
are effective for point-to-point navigation, the planning is
myopic and could fail when applied to complex tasks in
complex workspaces. On the other hand, it has been demon-
strated that correct-by-construction synthesis from linear tem-
poral logic (LTL) specifications has utility for composing
basic (atomic) actions to guarantee the task in response to
sensor events [18, 26, 29, 44]. Such approaches are naturally
conducive to mission specifications written in structured En-
glish [25], which are translatable into LTL formulas over
variables representing the atomic actions and sensor events
associated with the task.

In the surveillance-cleaning scenario of Fig. 1, the mo-
tion (moving between rooms), atomic actions (e.g., “remove
garbage”, “identify a subject”), and binary sensors (e.g. “in-
truder sensing”, “garbage sensing”) are assumed to be per-
fect: they are treated as black boxes that always return the
correct result and hence admit a discrete abstraction that is
appropriate for the task and workspace. A major challenge
underpinning this approach is in creating atomic elements
holding guarantees for correct execution of the discrete ab-
straction. To guarantee motion fulfillment, researchers have
explored combining LTL-based planners with grid planners
[7], sampling-based planners [22], or planners for multi-
ple robots predicated on motion primitives [38]. Such ap-
proaches are able to guarantee motion in cluttered environ-
ments but do not readily extend these guarantees to cases
where the environment is dynamic in nature. Solutions have
been sought that, in a computationally expensive manner,
partition the workspace finely [30, 44] or re-compute the
motion plan [7], or else apply conservative constraints for-
bidding the robot to occupy the same region as an adversar-
ial agent [24].

1.1 Approach

In the approach introduced in this paper, we alleviate such
difficulties by considering an integration of a high-level mis-
sion planner with a local planner that guarantees collision-
free motion in three dimensional workspaces when faced
with both static and dynamic obstacles, under the assump-
tion that the dynamic obstacles are not intentionally adver-
sarial. In this context, “intentionally adversarial” means that
the dynamic obstacles may behave in a way that may tem-
porarily prevent the robot from achieving a goal, but cannot
move in a way that actively always prevents the robot from
achieving its goals, for instance by blocking the robot for-
ever. Our integration involves two components: an offline
algorithm for plan synthesis adopting the benefit of an LTL
formalism, and an online local planning algorithm for exe-
cuting the plan. Our approach is centralized for the robots
in the team, and decentralized with respect to moving obsta-
cles, i.e. we do not control the moving obstacles. While the
robots are able to measure the position and velocity of mov-
ing obstacles, they only need to do so within a local range
of the robot – the key assumption in this paper is that the
robots are not required to have global knowledge of their
environment.

The basis of the offline synthesis is a novel discrete ab-
straction of the problem that applies simple rules to resolve
physical deadlocks, between two or more robots in a team
or between a robot and a dynamic obstacle. This abstrac-
tion is composed with a specification of a multi-agent task to
synthesize a strategy automaton encoding the mission plan.
In contrast to approaches that would require on-the-fly re-
planning upon encountering a physical deadlock [7, 22, 32],
the approach we propose automatically generates alternative
plans within the synthesized automaton. As with any reac-
tive task, there may exist no mission plan that guarantees
the task, due to the conservative requirement that a mission
plan must execute under all possible environment behaviors.
To address this conservatism, our approach automatically
identifies for which environment behaviors the mission is
guaranteed to hold. These additional assumptions are trans-
formed succinctly into a certificate of task infeasibility that
is explained to the user.

The online execution component is based on a local plan-
ner that can optimally avoid dynamic obstacles in two- or
three-dimensions, executed as a service called during exe-
cution of the strategy automaton. Given a dynamic model
of the robots and a coarse description of the moving agents
(e.g. their maximum velocities) our local planner computes a
plan that guarantees collision-free motion between the robot
and static and dynamic obstacles. The collision-avoidance
feature obviates the need for collision avoidance to be taken
care of by the discrete abstraction. It furthermore allows our
local planner to preserve the behaviors of the strategy au-
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Fig. 1: Surveillance/cleaning scenario. Two robots are
tasked with actively monitoring the rooms of a museum. The
robots must avoid collisions with static and moving obsta-
cles and resolve deadlocks in order to achieve their goals.

tomaton, by preventing a robot from entering unintended re-
gions as it carries out its task. To the authors’ knowledge,
this is the first end-to-end system that has been devised to
guarantee multi-agent mission-level tasks in dynamic envi-
ronments using optimization-based local planners.

The proposed deadlock resolution approach is motivated
by works in event-driven planning (e.g. [14]), but yields a
strategy that scales well with the number of dynamic ob-
stacles without incurring conservatism that would prevent
mission plans from being synthesized. In particular,

– Our approach establishes proof for task success without
requiring a costly re-planning step or fine workspace dis-
cretization, as long as the environment that causes dead-
locks behaves according to the generated assumptions.

– Our approach comes with proof that admissible dead-
locks are always resolved and livelocks (the situation
where a robot is free to move but unable to reach a goal)
never occur.

– The fully automated nature of our approach has practi-
cal utility, since the user does not need to intervene to
debug specifications. In fact, our approach explains, in
an intelligible way, any additional environment assump-
tions it has added.

– Another practical feature of our approach is that, un-
like related planners [24, 30], we do not require global
knowledge of the obstacles. As we show, this allows our
approach to scale to an arbitrary number of dynamic ob-
stacles, as long as the aggregate behavior of the obstacles
adhere to all specified assumptions.

Our approach is well-suited for any dynamic environ-
ment, but we emphasize its particular value to human en-
vironments. Specifically, our automatically-generated envi-

ronment assumptions are transformed into human-readable
certificates such as:

The synthesized controller is certified for this task, if any
encountered deadlock between the robot and a dynamic

obstacle in the hallway resolves eventually.

The certificates provide, at synthesis time, a set of rules
defining situations which could make it impossible for the
robot to achieve its goals, with the purpose of creating a
layer of cooperation between the user (i.e. the human that
performs the controller synthesis and deploys the system)
and the robots. This frees a user from having to come up
with assumptions that characterize the environment’s behav-
ior, a difficult proposition in practice. If these assumptions
are broken at runtime, then this signifies that the task is no
longer strictly guaranteed. Our approach also aims to reduce
situations where members of the robot team become dead-
locked with one another, by adopting a coordination strategy
in the specification preventing actions that may induce dead-
locks.

A more detailed overview of the approach is given in
Sec. 4, right after formalizing the problem in Sec. 3.

1.2 Contribution

This paper presents two main contributions toward reactive
mission and motion planing with deadlock resolution among
dynamic obstacles.

– A holistic synthesis approach to provably achieve collision-
free behaviors in dynamic environments with an arbi-
trary number of moving obstacles that does not require
mutual exclusion. The approach leverages (a) reactive
mission planning to globally resolve deadlocks and achieve
the specified task, and (b) online local motion planning
to guarantee collision free motion and respect the robot
kinodynamics.

– An automatic means for encoding tasks that resolve dead-
lock based on automatically-generated revisions to a spec-
ification. Our approach automatically generates human-
comprehensible assumptions in LTL that, if satisfied by
the controlled robots and the dynamic obstacles, would
ensure correct behavior. We show that our revision ap-
proach is sufficient in making the original specification
realizable.

We also contribute an optimization-based method for lo-
cal motion planning that guarantees real-time collision avoid-
ance with static and dynamic obstacles in 3D environments
while remaining faithful to the robot’s dynamics. The method
extends [3] by efficiently computing the robot’s local free-
space in cluttered environments. Yet, the reader may opt
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for a different local planner and maintain the synthesis ap-
proach, as long as the local planner provides avoidance guar-
antees. The method is evaluated in experiments with ground
robots and in simulations with aerial vehicles.

In a preliminary version of this work, [12], a strategy
was developed for synthesizing controllers for guaranteed
collision-free motion of a robot team. In this paper, we ex-
tend those results by presenting a complete description of
the proposed abstraction method and offline controller syn-
thesis procedure, solidify details on the mathematical deriva-
tion for the constraints of the local motion planner, and pro-
vide in-depth evaluation of our proposed synthesis techniques
aided by both simulation and physical experiments. Addi-
tionally, we enhance the approach in two ways. First, our ap-
proach reasons about the geometry of workspace regions in
order to avoid preventable deadlock. For instance, if a corri-
dor is only wide enough for one robot, we offer an approach
that coordinates the actions of two robots so that they do
not head in opposite directions in the corridor. Second, we
present a general approach that allows a richer set of dead-
lock resolution rules to be chosen at synthesis time.

1.3 Related Work

1.3.1 Reactive Synthesis for Mission Planning

A number of approaches are suited to automatic synthesis
of correct-by-construction controllers from mission specifi-
cations written as temporal logic formulas [7, 22, 31]. Reac-
tive synthesis [26, 44] extends these capabilities to tasks in
which the desired outcome depends on uncontrolled events
in the environment and changing sensor inputs, and is espe-
cially compelling given the complex nature of multi-agent
scenarios. For instance, [41] synthesized control and com-
munication for producing optimal multi-robot trajectories,
[9] distributed a specification among a robot team, and [35,
36] synthesized centralized reactive controllers based on an-
alytically constructed multi-robot motion controllers. Dis-
tributed and decomposition-based planning approaches tackle
the complexity problem when scaling to a large number of
robots. For instance, [40] construct distributed controllers
from a specifications already separated into coordinating and
non-coordinating tasks, while [39] automatically decompose
a specification into independent, distributed task specifica-
tions. In most approaches, moving obstacles are modeled in
a discrete manner as part of the abstraction, leading to over-
conservative restrictions like requiring robots to be at least
one region apart. In contrast, our method only requires lo-
cal awareness of the robot’s surroundings, and guarantees
collision-avoidance via a local planner.

Reactive synthesis in dynamically-changing environments
presents a crucial dilemma: explicitly modeling the state of

all other agents can be computationally prohibitive, but in-
complete models of the environment destroy task satisfac-
tion guarantees. To address the state-explosion problem while
tracking the state of uncontrollable agents, [45] formulated
an incremental synthesis procedure that started with a set
number of agents assumed observable, and added more agents
to this set depending on available computational resources;
however, unlike our approach, they still required global knowl-
edge of the external agents. The authors in [30], on the other
hand, made local modifications to the synthesized strategy
when new elements of the environment were discovered that
violated the original assumptions. While we also update our
specification, we differ from [30] in that no re-synthesis step
is needed at runtime, thereby preserving guarantees before
runtime.

Our goal is different in that we assume a centralized
high-level controller that guarantees the specification through
deadlock resolution by choosing environment assumptions
to avoid both deadlock and livelock.

1.3.2 Specification Revisions

Recent efforts in reactive synthesis have focused on auto-
matically identifying certain environment assumptions that
may prevent the existence of a controller that satisfies the
task. Approaches to assumption-mining have provided tech-
niques that enable automatic specification debugging for spec-
ifications of any structure [4, 28]. While providing the abil-
ity to automate the debugging process, they still requires in-
put from the user, for instance the variables the user desires
and a final selection of candidate assumptions generated by
the algorithm, which has drawbacks for realizing a fully-
automated robotic mission planner. An assumption-mining
approach to certify the necessary environment assumptions
for a given task and robot dynamics was introduced in [11],
however, the dynamics-based abstraction do not extend nat-
urally to multi-agent scenarios. This proposed approach ob-
viates the need for the user to intervene during the planning
process.

We propose a novel approach in which assumptions on
the environment are generated to identify likely deadlock
situations. These added assumptions may be interpreted as
restricting the mobility of the uncontrolled agents and are
relaxed, when possible, by identifying when they may be
violated, if only on a temporary basis. In this regard, our
approach is inspired by works on error resilience [17] and
recovery [43] in reactive synthesis.

1.3.3 Motion Planning in Dynamic Environments

Collision-free (and deadlock-free) motion planning for multi-
robot teams has been successfully demonstrated via non-
convex optimization, as proposed in [5, 33], but these ap-
proaches did not account for dynamic obstacles, nor could
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be computed in real-time. On the other hand, convex opti-
mization approaches for collision avoidance, such as [6] and
[1], are online and account for dynamic obstacles, but can-
not reason globally to resolve deadlocks. In this work, we
extend these works to enforce collision avoidance and mo-
tion constraints over a short time horizon, where the global
execution is given by a discrete controller synthesized from
a mission specification.

Also relevant to our efforts are the works in deadlock
resolution. The authors of [23] applied pedestrian-avoidance
principles to deadlock resolution in narrow passageways.
While our approach is similarly reactive to the environment,
we additionally reason about situations that cannot be lo-
cally resolved (e.g. a blocked corridor). Along similar lines,
[10] described a centralized graph search technique for mo-
tion planning, but did not consider dynamic obstacles, and
required a rich underlying graph to represent multi-robot
motions with kinematic constraints. In contrast, our proposed
local planning approach presents a more concise discrete ab-
straction and also applies to 3D environments. Traditional
motion planning approaches such as RRT [27], PRM [20]
and lattice based planners [34] can also be applied to com-
pute collision - and deadlock - free motions for a single
robot. But, in contrast to our synthesis approach, they do
not typically reason about the mission strategy of multiple
robots, nor encode logical constraints representing mission
specifications.

1.4 Organization

The remainder of this paper is structured as follows. The
required concepts for offline synthesis and online motion
planning are described in Sec. 2. We formalize the problem
in Sec. 3 and give an overview of the method in Sec. 4. In
Sec. 5, we introduce a strategy for mission planning for re-
solving deadlock at runtime, while, in Sec. 6, we introduce
an automated approach for generating runtime certificates
and a coordination scheme for mission planning. In Sec. 7,
we describe the online motion planner. We provide theoreti-
cal guarantees of the integrated approach in Sec. 8. In Sec. 9,
we present extensive simulation and experimental results.
Conclusions and future work are provided in Sec. 10.

2 Preliminaries

Throughout this paper scalars are denoted in italics, x, and
vectors in bold, x ∈ Rn, with n denoting the dimension of
the workspace. The robot’s current position is denoted by
p ∈ Rn and its current velocity by v = ṗ. A map of the
workspace W ⊂ Rn is considered, and formed by a set of
static obstacles, given by a list of polytopes, O ⊂ Rn. For
mission synthesis the map is abstracted by a set of discrete

regions R = {R1, . . . , Rp}, and their topological connec-
tions, covering the obstacle-free workspace F = Rn \ O,
where the open sets Rα ⊆W .

We consider robots moving in R3 and approximate them
by their smallest enclosing cylinder of radius r and height
2h, denoted by V. Its ε-additive dilation of radius r̄ = r + ε

and height h̄ = h+ε is denoted by Vε. For a setX ⊂ Rn we
denote the collision set by X + V = {p ∈ Rn |X ∩ V(p) 6=
∅}, with V(p) a volume V at position p. Throughout, the
notation ‖ · ‖ is used to denote the Euclidean norm.

We consider a set of dynamic obstacles DO and denote
the volume occupied by a dynamic obstacle i ∈ DO, at po-
sition pi, by Vi(pi). To be able to prove safety in dynamic
environments, we assume that all moving obstacles either
maintain a constant velocity during the planning horizon (a
couple of seconds), or that they employ an identical algo-
rithm for collision avoidance as our robots, as introduced in
the Reciprocal Velocity Obstacles literature [3]. In this work
we do not treat the case where moving obstacles seek colli-
sions and are capable of overtaking the robots. Instead, we
assume a fair environment - one where it is always possible
for the robots to avoid collisions - such as the case when
operating with humans or other risk-adverse agents.

2.1 Linear Temporal Logic

LTL formulas are defined over the setAP of atomic (Boolean)
propositions by the recursive grammar ϕ ::= π ∈ AP |
ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2. From the Boolean op-
erators ∧ “conjunction” and ¬ “negation”, and the tempo-
ral operators © “next” and U “until”, the following opera-
tors are derived: “disjunction” ∨, “implication”⇒, “equiv-
alence” ⇔, “always” �, and “eventually” �. We refer the
reader to [42] for a description of the semantics of LTL. Let
AP represent the set of atomic propositions, consisting of
environment propositions (X ) corresponding to thresholded
sensor values, and system propositions (Y) corresponding to
the robot’s actions and location with respect to a partitioning
of the workspace. The value of each π ∈ X ∪ Y is the ab-
stracted binary state of a low-level component. These might
correspond to, for instance, thresholded sensor values, dis-
crete actions that a robot can take, or a discrete region (e.g.
room in a house).

Definition 1 (Reactive Mission Specification) A Reactive
Mission Specification is a LTL formula of the form ϕ =

ϕei ∧ϕet ∧ϕeg =⇒ ϕsi ∧ϕst ∧ϕsg , with s and e standing for
‘system’ and ‘environment’, such that

– ϕei , ϕ
s
i are formulas for the initial conditions free of tem-

poral operators.
– ϕet , ϕ

s
t are the safety conditions (transitions) to be sat-

isfied always, and are of the form �ψ, where ψ is a
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Boolean formula constructed from subformulas inAP ∪
©AP .

– ϕeg , ϕsg are the liveness conditions (goals) to be satisfied
infinitely often, with each taking the form � �ψ, with
ψ a Boolean formula constructed from subformulas in
AP ∪©AP .

A strategy automaton that realizes a reactive mission
specification ϕ is a deterministic strategy that, given a fi-
nite sequence of truth assignments to the variables in X and
Y , and the next truth assignment to variables in X , pro-
vides a truth assignment to variables in Y such that the re-
sulting infinite sequence satisfies ϕ. If such a strategy can
be found, ϕ is realizable. Otherwise, it is unrealizable. Us-
ing a fragment of LTL known as generalized reactivity(1), a
strategy automata for ϕ of the form above can be efficiently
synthesized [8], and converted into hybrid controllers for
robotic systems by invoking atomic controllers [26]. These
controllers are reactive: they respond to sensor events at run-
time.

2.2 LTL Encoding for Multi-Robot Tasks

We adopt a LTL encoding of a centralized multi-robot mis-
sion that is robust to the inherent variability in the duration
of inter-region robot motion in continuous environments [37].
Let APR = {πiα | Rα ∈ R} be the set of Boolean proposi-
tions representing the workspace regions, such that πiα ∈
APR is True when robot i is physically in Rα for α ∈
[1, . . . , p]. We call πiα in APR ⊆ X a completion proposi-
tion, signaling when robot i is physically insideRα. We also
define the set AP actR ⊆ Y that captures robot commands
that initiate movement between regions. We call πiact,α in
AP actR an activation variable for moving to Rα (but has not
necessarily completed motion to Rα). Non-motion actions
are handled similarly. Observe that πiα and πiact,α′ may be
true at the same time if robot i is in Rα′ and is moving to-
wardRα, whereRα′ andRα are adjacent regions. Also note
that this is sufficient for the special case πiα and πiact,α (the
robot stays put). We assume reasonably that non-motion ac-
tions are independent of motion, so that actions themselves
do not involve moving within any particular region and, if it
is possible to execute a particular action within a region, it
can be performed anywhere within that region.

We now solidify the semantics of the LTL formulas in
the context of robot mission and motion planning. Let T de-
note a particular fixed time step at which the strategy au-
tomaton is updated with sensory information and supplies a
new input to the local planner (as described in Sec. 4.3). A
proposition π ∈ AP is True at time t > 0 iff©π ∈ ©AP

is True at t+ T .

Definition 2 (LTL Encoding of Motion [37]) A task encod-
ing that admits arbitrary controller execution durations is

Fig. 2: Example of two connected regions.

ϕst :
∧

πiα∈APR,
i∈[1,nrobots]

�(©πiα ⇒
∨

Rβ∈Adj(Rα)

©πiact,β),

ϕet :
∧

πiα∈APR,
Rβ∈Adj(Rα),
i∈[1,nrobots]

�(πiα ∧ πiact,β ⇒©πiα ∨©πiβ),

ϕeg : � �
∧

πiact,α∈AP
act
R ,

i∈[1,nrobots]

((
πiact,α ∧©(πiα ∨ ¬πiact,α)

)
∨

(
¬πiact,α ∧©(¬πiα ∨ πiact,α)

))
,

where Adj : R → 2R is an adjacency relation on regions in
R and nrobots is the number of robots. The ϕst -formula is a
system safety condition describing which actions can occur
(©πiact,β) given the observed completion variables (©πiα).
Formula ϕet captures the allowed transitions (©πiβ) given
past completion (πiα) and activation (πiact,β) variables. For-
mula ϕeg enforces that every motion and every action eventu-
ally completes (first disjunct) as long as the activation vari-
able is held fixed (second disjunct). Specifically, the second
disjunct in this formula allows the system to change its mind
for a given action, absolving the environment from having
to complete motion for that action. Both ϕet and ϕeg are in-
cluded as conjuncts to the antecedent of ϕ.

Take, for example, two regions R1 and R2, arranged as
shown in Fig. 2, with a robot positioned in R1 and heading
toward R2. The system can only take a subset of actions; in
this case, it is free to stay in R1 or move to R2:

�(©πR1 =⇒©πact,R1 ∨©πact,R2).

Upon taking an action, for instance move to R2 (activate
πact,R2), the system is allowed to be in either of the two
regions

�(πR1 ∧ πact,R2 =⇒©πR1 ∨©πR2),

and the environment must eventually allow the system to
either arrive at this region or change course

� �((πact,R2 ∧©(πR2 ∨ ¬πact,R2)) ∨
(¬πact,R2 ∧©(¬πR2 ∨ πact,R2))).
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To complete the motion encoding, mutual exclusion is also
enforced to express the fact that the robot can only be in one
region at a time and must decide on one motion at a time.
That is, �(πR1 ∨ πR2) and �(πact,R1 ∨ πact,R2).

We note that it is shown in [15] that complexity of syn-
thesis under the generalized reactivity(1) fragment is poly-
nomial in the size of the state space of the game structure
that is, in turn, at most exponential in the total number of
propositions. Considering motion alone, the formulas effec-
tively impose restrictions to the allowed state transitions to
only consider those that are physically adjacent, effectively
reducing the size of the synthesis problem.

3 Problem Formulation

This work combines global planning with local motion plan-
ning to produce a correct-by-construction synthesis method
that avoids collisions locally yet is able to resolve dead-
locks. Synthesis is carried out in a fully-automated way;
when modifications to the original specification are neces-
sary, these are explained to the user in an intelligible manner.
We provide an example to motivate our correct-by-construction
synthesis method.

Example 1 Consider the workspace in Fig. 3b, where two
robots are tasked with visiting regions Goal1 and Goal2 in-
finitely often; that is,

ϕgs =
∧

i∈{1,2}

� �(πiGoal1) ∧� �(πiGoal2).

Figure 3 illustrates two approaches for solving this task.
Figures 3a and 3b show the result of applying a local motion
planning scheme to locally avoid collisions with other robots
or dynamic obstacles. In certain instances, such as the case
shown in Fig. 3b, deadlocks can lead to the execution failing
to satisfy the task.

Our approach, shown in Fig. 3c, relies on a local mo-
tion planner to allow several agents per region and avoid
dynamic obstacles, as in Fig. 3a. Furthermore, it is able to
resolve encountered deadlocks that may arise. In this exam-
ple, when one of the robots encounters deadlock, it reverses
its motion to allow the other one to pass into Goal 1, ulti-
mately taking another route to Goal 2.

Definition 3 (Collision) A robot at position p is in colli-
sion with a static obstacle if V(p) ∩ O 6= ∅. The robot is
in collision with a dynamic obstacle i at position pi and of
volume Vi(pi) if V(p) ∩ Vi(pi) 6= ∅.

Denote by p(t) the position of a robot at time t and by
pi(t) the position of a dynamic obstacle i at time t. The tra-
jectory of the dynamic obstacles is estimated between the
current time tk and a time horizon τ . In our model we con-
sider constant velocity.

Definition 4 (Collision Free Local Motion) A trajectory is
said to be collision free if for all times between tk and the
time horizon there is no collision between the robot and any
static or dynamic obstacle,

V(p(t)) ∩
(
O ∪
i∈DO

Vi(pi(t))
)

= ∅ ∀t ∈ [tk, tk + τ ].

(1)

Which is equivalent to

V(p(t)) ⊂ F and

V(p(t)) ∩ Vi(pi(t)) = ∅ ∀t ∈ [tk, tk + τ ], ∀i ∈ DO. (2)

Definition 5 (Deadlock) In this work we consider motion
related deadlocks. A robot at position p is said to be in a
deadlock if it is not in a collision, it has not achieved the tar-
get given by the automaton and it can not make progress
towards the goal, i.e. it is not moving, for a prespecified
amount of time.

The goal of this work is to solve a set of problems as
follows.

Problem 1 (Local Collision Avoidance) Given the dynam-
ics for each robot in the team, construct an online local plan-
ner that guarantees collision avoidance with static and dy-
namic (moving) obstacles.

Problem 2 (Synthesis of Strategy Automaton with Dead-
lock Resolution) Given a topological map, a local motion
planner that solves Problem 1 and a realizable mission spec-
ification ϕ that ignores collisions, automatically construct a
specification ϕ′ that includes both ϕ and a model of dead-
lock between robots and unmodeled dynamic obstacles. Use
ϕ′ to synthesize a controller that satisfies ϕ′.

This synthesized controller will re-route the robots to re-
solve deadlocks (should they occur), while satisfying the re-
active mission specification and remaining livelock free. For
mission specifications that consider the presence of possible
deadlocks, there may be no satisfying controller. We there-
fore synthesize environment assumption revisions as addi-
tional LTL formulas to identify cases where dynamic obsta-
cles may trigger deadlock and trap the system from achiev-
ing its goals. These formulas are significant because they of-
fer certificates explaining the required behaviors of the envi-
ronment that, if followed, guarantee that the robot team will
carry out the task. Such certificates must be conveyed to the
user in a clear, understandable manner. An example of such
a condition is: “the environment will never cause deadlock if
robot 1 is in the kitchen and moving to the door”. This leads
to the following Problem.
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(a) Specification ϕ with local planner (b) Specification ϕ with local planner (c) Proposed approach with deadlock resolution

Fig. 3: Examples of integrated mission and motion planning. The blue robot starts in the region Goal 1 (top) and is tasked
to visit Goal 2 (bottom right) and return to Goal 1. The red robot is placed in the region Goal 2 and is tasked to visit Goal 1
and return. The shortest path for both robots, given by solving a specification ϕ is to go through the corridor on the right. In
(a), an execution of a specification ϕ using a local planner that locally avoids the collision between both robots and succeeds
in executing the mission. (b) employs the same specification as (a), but the workspace is shrunk, resulting in a deadlock
at location ?. (c) shows an execution of a controller synthesized from the modified specification ϕ′′ using the deadlock
resolution strategy and local planner developed in this work. With our approach, dynamic obstacles can be avoided locally,
as in (a), and deadlocks can also be resolved.

Problem 3 (Revising Environment Assumptions) Given an
unrealizable reactive mission specificationϕ′, synthesize en-
vironment assumption revisions [ϕet ]

rev such that the spec-
ification ϕ′′ formed by replacing ϕet with [ϕet ]

rev is realiz-
able, and provide the user with a human-readable descrip-
tion of these revisions as certificates for guaranteeing the
task.

4 Approach

This work solves Problems 1, 2 and 3 via a combined offline
and online approach, which (a) synthesizes a strategy au-
tomaton that realizes the mission and (b) computes a local
motion planner that executes the automaton in a collision-
free manner. Figure 4 highlights the offline and online com-
ponents and their interconnections, which we now introduce.

4.1 Offline

The inputs for the offline part of the method are: (a) a user
given mission specification, (b) a discrete topological map
of the workspace (which ignores dynamic obstacles) and (c)
the dynamic model and controller of the robots in the team.
The offline part of the method consists of two independent
parts.

4.1.1 Mission Planning

In this step we synthesize a centralized controller, or finite
state machine, that will guide the robots in the team through
the topological map. This controller considers possible phys-
ical deadlocks between robots in the team as well as with
moving obstacles. Since the position of the moving obsta-
cles is not known at synthesis time, environment assump-
tions are iteratively revised as necessary. The resulting strat-
egy automaton with the revisions included accommodate dead-
locks wherever they may occur at runtime, and fulfillment
of the specification is guaranteed as long as the environment
behaves according to the assumptions explained to the user
in the revisions generation step. We also adopt a recovery
scheme [43] that synthesizes a strategy that allows violations
of environment safety assumptions to be tolerated, retaining
satisfaction guarantees as long as the violation is transient.

The mission planning part of the offline synthesis ap-
proach is described in detail in Sec. 5 and Sec. 6.

4.1.2 Motion Planning

The automaton is agnostic to the robot’s dynamics, which
are instead accounted for by the local planner. For a given
robot model and controller a set of motion constraints, or
tracking errors, are precomputed at synthesis time. This part
was described in Sec. 7.2.
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LTL parser Deadlock resolution

Reactive synthesisRevision & recovery

Synthesis of revisions
Structured

English

specification

Topological map

User feedback

Motion constraints (per agent)Robot dynamics

Off-line

Finite state machine

On-line

Local

motion

planner

. . .

Robot
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Neighboring

agents

(p, v, size)

Position and deadlock state sensor

Local

motion

planner

Robot

Fig. 4: Structure of the proposed mission and motion planner, with offline and online parts. The mission planning is offline
and is described in Sec. 5 and in Sec. 6. The motion planner, Sec. 7, is computed at runtime and utilizes the strategy automaton
(finite-state machine) synthesized offline by the mission planner.

During execution, the local planner is fed, at runtime,
a set of constraints that are then solved for in an efficient
manner. These constraints include region boundaries, static
and dynamic obstacles and kinodynamic model of the robot.

4.2 Online

At each time step of the execution, the synthesized strat-
egy automaton provides a desired goal for each controlled
robot in the team. Then, each robot independently computes
a local trajectory that achieves its goal while avoiding other
agents.

If a physical deadlock is sensed, an alternative goal is ex-
tracted for the robot from the synthesized strategy automa-
ton. The existence of such an alternative in the automaton is
guaranteed by construction if the environment assumptions
are satisfied. The local planner builds on [3] by adopting a
convex optimization approach as described in Sec. 7.

4.3 Integration of mission and motion planning

The proposed method consist of two interconnected parts,
the mission planner and the motion planner. Figure 4 high-
lights the components and their interconnections.

The mission planner is computed offline, prior to execu-
tion. It requires a topological map of the environment given
by a description of the regions, such as rooms, and their
connections. It creates a finite state machine or automaton
that achieve the high-level specification and from which the
robots in the team can extract a strategy at runtime. Note
that we do not optimize the mission planner in this work,
but our framework allows us to readily adopt techniques for
optimal execution such as [21] to extract an optimal strategy
automaton.

At each time instance in the execution, a target motion is
extracted from the automaton. The motion planner computes
a collision-free motion to make progress towards the target.

If a physical deadlock is sensed, an alternative strategy is
extracted from the automaton.

The motion planner requires a local map of the environ-
ment W , containing all the static and moving obstacles. The
regions in the free space F of the local map - used at run-
time - must be labeled to match the regions R of the topo-
logical map - used for offline synthesis.

If the automaton commands a robot to transition between
two connected regions, a path is computed from the current
position of the robot to the border of the destination region
and then is followed by the local planner. If the automaton
commands a robot to remain in a region, the local planner
moves the robot towards the middle point of the region.

5 Offline Synthesis: Resolving Deadlock

In this section, we discuss how to synthesize a strategy au-
tomaton given a mission specification and a topological map
of the environment, provided that, at runtime, a low-level
control strategy is applied that guarantees collision-free mo-
tion. We assume that the task specification ϕ ignores col-
lisions, but we allow the possibility that deadlocks can oc-
cur at any time during the robot’s execution. Deadlocks can
trap the robot from achieving its goals, rendering the spec-
ification unrealizable. The crux of this work is an approach
that systematically modifies the specification with additional
behaviors that redirect the robot team in order to resolve
deadlocks, whenever possible. If a satisfying mission plan
does not exist, the approach iteratively adds assumptions on
the deadlock behavior to the specification until a satisfying
strategy can be found for the robot team. By focusing on
deadlock rather than the positioning of dynamic obstacles, it
allows our approach to be valid for any number of dynamic
obstacles, as long as they fulfill the stated assumptions re-
turned by our synthesis approach. It also removes the need
to globally track the positions of every obstacle at runtime.

An outline of the general approach is shown in Fig. 5.
Such a strategy was chosen to disable any blocked routes to
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the goal and thereby enable the strategy automaton to seek
alternate routes once deadlock has been encountered. In this
section, we detail the steps involved to implement the overall
approach.

5.1 Deadlock Resolution

We declare a robot to be physically in deadlock with another
agent if it has not reached its goal but cannot move. This can
happen when an agent becomes blocked either by another
agent or by a dynamic obstacle. To keep track of which robot
is in deadlock, we introduce Boolean input signals xij ∈ X ,
where i = 1, . . . , nrobots and j = 0, . . . , nrobots (the in-
dex j = 0 representing a dynamic obstacle). Without loss
of generality, we consider only deadlock between pairs of
agents at a time. For the case where a robot is in deadlock
while in proximity to a dynamic obstacle, we let j = 0 and
refer to this case as singleton deadlock. Otherwise, the robot
is in deadlock with another robot on its team, j 6= 0, and is
considered to be in a state of pairwise deadlock. The propo-
sition xi0 is True iff robot i is in singleton deadlock and xij

is True iff robots i and j are in pairwise deadlock. We defer
detailing our approach for detecting deadlock at runtime to
Sec. 7.

1

2

3a

3b

4a

4b

R1 R2 R3

R4 R5

R6 R7 R8

Fig. 5: Diagram illustrating the deadlock resolution strategy
for a single robot tasked with visitingR1 andR8. Starting in
region R1 (marked ‘1’), the robot encounters deadlock (2)
in region R6, while heading to R7. The R6-to-R7 transition
is prevented (red line), and the robot must move a discrete
radius m away from the deadlock event to resolve deadlock.
If m = 1, then deadlock is resolved once the robot crosses
the green line, leaving R6 (3a). From there, it may reach
R8 (4a) if no other deadlocks are encountered. On the other
hand, whenm = 3, deadlock is resolved only when crossing
the cyan line (3b); an alternate path to the goal may result
(4b).

To simplify the notation in what follows, we introduce
the following shorthand:

θijP = ¬xij ∧©xij
rising edge–pairwise deadlock
between robots i and j

θiS = ¬xi0 ∧©xi0 rising edge–singleton deadlock
for robot i

ψiαβ = πiα ∧©πiα ∧ πiact,β
incomplete transition (α 6= β);
remain in region (α = β)

The definition for singleton deadlock is abstract enough to
capture the case where deadlock occurs between the robot
and any number of dynamic obstacles - singleton deadlock
will be set if the robot stops moving when encountering one
or more dynamic obstacles blocking its path. On the other
hand, since the members of the team are controlled by the
same mission planner, pairwise deadlock can be resolved
separately. For instance, if three robots on a team converge
on the same point, then three pairwise deadlock propositions
will be set.

Resolving deadlock by redirecting the robot’s motion
based on the instantaneous value of xij alone may result
in livelock, where the robot may be trapped from achiev-
ing its goals as a result of repeated deadlock status changes.
For this reason, our scheme automatically introduces addi-
tional memory propositions that are set when deadlock is
sensed, and reset once the robot moves a predefined discrete
radius, denoted m, defining the a deadlock resolution hori-
zon (i.e. it traverses m regions away from the region where
deadlock occurred in order for the deadlock to be considered
“resolved”).

Definition 6 (Discrete Radius) Let πicurr(ki) ∈ APR and
πiact,curr(ki−1) ∈ AP

act
R be, respectively, the configuration

and action taken by robot i, where ki = 1, 2, . . . repre-
sents an event that is incremented when robot i enters a
new region, i.e. ki is incremented at the time instant when
curr(ki−1)← curr(ki). The current region index curr(·) ∈
[1, p] is defined recursively, initialized such that πicurr(1) is
the robot’s completion when deadlock was recorded and
πiact,curr(0) is the robot’s action when deadlock was recorded.
Then, the discrete radius m is the number of successive
steps ki ∈ [1,m] for which we impose the restriction
πiact,curr(ki) ∈ AP

act
R \{πiact,curr(ki−1)} on the robot’s ac-

tions. This ensures that the robot makes a move that does not
re-enter the region just visited.

The concept behind the proposed deadlock resolution
approach is to force the robot to actively alter its strategy to
overcome a deadlock by imposing a small number of con-
straints without directly prescribing the path the robot is re-
quired to take. The path is derived once a strategy automaton
is synthesized from the specification augmented with these
revisions. For instance, as illustrated in Fig. 5, for the case
m = 1 (resp.m = 3), if a deadlock is sensed at point (2), the
revisions forbid the robot from crossing the red line until it



Reactive Mission and Motion Planning with Deadlock Resolution Avoiding Dynamic Obstacles 11

reaches the green line (resp. cyan line). As a result, different
choices of m will lead to the synthesis of strategies that give
rise to different subsequent paths to goal region R8 and de-
cisions whether or not to revisit the location where deadlock
had occurred.

We first introduce an approach where resolution occurs
when the robot leaves its current region, then generalize this
approach to allow the user to choose any number of discrete
steps,m ≥ 0, to be taken by the robot before deadlock is de-
clared as resolved. In this work, we assume m to be chosen
ahead of time.

5.2 Resolving Deadlock when m = 0

Our deadlock resolution approach for the casem = 0 amounts
to the situation where robot i is forced to move in another di-
rection whenever xij becomes True for j = 0, . . . , nrobots.
As long as xij remains True when robot i is in region Rα,
we disallow motion to Rβ as follows:

�
∧

πiα∈APR,
Rβ∈Adj(Rα)

(
©xij ∧ πiα =⇒ ©(¬πiact,α ∧ ¬πiact,β)

)
. (3)

It is easily observed that, as soon as the robot’s motion is
nonzero when it begins to move in a direction opposite to its
previous motion, xij becomes False again and the robot is
free to resume its motion to Rβ . This can lead to unwanted
behaviors, such as chattering. To avoid chattering behaviors,
we enrich the deadlock resolution approach to allow for any
choice of m > 0.

5.3 Resolving Deadlock when m = 1

For each robot, we introduce into Y the system propositions
{yiβ | Rβ ∈ R} ⊂ Y representing the deadlock flag oc-
curring when activating a transition from a given region Rα
to region Rβ . When the flag is set, the following formula
restricts the robot’s motion:

�
∧

πiα∈APR,
Rβ∈Adj(Rα)

(
yiβ ∧ πiα =⇒ ©(¬πiact,α ∧ ¬πiact,β)

)
. (4)

The role of yiβ is to disallow the current transition (from Rα
to Rβ), as well as the self-transition from Rα to Rα. The
self-transition is disallowed to force the robot to leave the
region where the deadlock occurred (Rα), instead of waiting
for it to resolve; Rβ is disallowed since the robot cannot
make that transition.

Next, we encode conditions for detecting singleton dead-
lock at runtime, and storing these as propositions yiβ that

memorize that singleton deadlock had occurred:

�
∧

πiα∈APR,
Rβ∈Adj(Rα)

(
¬yiβ ⇒

(
(θiS ∧ ψiαβ)⇒© yiβ

))
, (5)

�
∧

πiα∈APR,
Rβ∈Adj(Rα)

(
yiβ ⇒

(
(πiα ∧©πiα)⇔© yiβ

))
. (6)

The first formula sets the deadlock flag yiβ if the robot is acti-
vating transition from Rα to Rβ . The second formula keeps
the flag set until a transition has been made out of Rα (to a
region different from Rβ). Notice that, in our construction,
singleton deadlock considers deadlock between one robot
and any number of dynamic obstacles, alleviating the need
to globally track or identify obstacles at runtime. While this
construction could introduce cycling, we prefer it over an
approach that stores the entire path because we can limit the
number of propositions added to Y in order to manage com-
plexity. For instance, if we are aware that deadlock does not
occur when the robot is trying to reach a given region R·,
we can eliminate the variable yi· .

For pairwise deadlock, we add the following formulas
encoding the conditions for declaring that pairwise dead-
lock has been detected. Note that the disjunction in the for-
mula allows the synthesis tool to decide which one of the
two robots should react to the deadlock:

�
(
θijP =⇒

( ∨
`∈{ij}

∧
π`α∈APR,

Rβ∈Adj(Rα)

(
¬y`β ∧ ψ`αβ

)
=⇒ © y`β

))
. (7)

We also add the following to ensure that the memory propo-
sitions are only set when the rising edge of deadlock (sin-
gleton or pairwise) is sensed.

�
( ∧
i∈[1,nrobots]

Rβ∈R

(
¬yiβ∧ ¬θiS ∧

∧
j∈[1,nrobots]

j 6=i

¬θijP
)

=⇒ ©¬yiβ
)
.(8)

In practice, we do not need a proposition yiβ for every Rβ ∈
R, but only d = max

Rα∈R
(|Adj(Rα)|) such propositions for

each robot in order to remember all of the deadlocks around
each region of the workspace. Here | · | denotes the set car-
dinality. The number of conjuncts required for condition (7)
is
(
nrobots

2

)
, but, since the number of formulas contributes

at worst linear complexity (due to parsing of each formula),
the conjuncts contribute only a small amount to the overall
complexity. Note that the complexity of the synthesis algo-
rithm is a function of the number of propositions and not the
size of the specification.

Conjuncting the conditions (4)–(8) withϕst yields a mod-
ified formula [ϕst ]

′ over the set AP , and the new abstracted
specification ϕabstr = ϕei ∧ϕet ∧ϕeg =⇒ [ϕsi ]

′∧ [ϕst ]
′∧ϕsg .

The initial conditions are modified by setting the additional
propositions xij , yiα to False.
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5.4 Resolving Deadlock when m > 1

In some cases, having a deadlock resolution strategy in which
multiple discrete steps must be made away from any en-
countered deadlock may result in different behavior than a
strategy in which deadlock is resolved when moving away
just one step. Considering Fig. 5, the case m = 3 results
in greater exploration of the workspace, whereas the case
m = 1 results in confinement to a smaller portion of the
workspace.

We generalize the strategy presented in Sec. 5.3 by con-
sidering the case where deadlock is resolved once m > 1

discrete moves have been taken away from the last encoun-
tered deadlock. In what follows, the same formulas as in
Sec. 5.3 apply; here, we only describe modifications to this
setup. To ensure each robot moves away from deadlock a
discrete radius, we require m − 1 propositions (for robot i,
yiout,1, . . . , y

i
out,m−1) that are set and reset in a chain in or-

der to memorize the robot’s position from the encountered
deadlock. yiout,k are initially False for all i, k.

In order to set the first such memory proposition in the
chain, the terms © yiβ in (5) and © y`β in (7) are replaced
with © yiβ ∧ © yiout,1 and © y`β ∧ © y`out,1, respectively,
and the abstracted specification ϕabstr is constructed based
on these formulas. For each subsequent discrete step away
from deadlock, we require the remaining propositions to be
set when the one with next lowest index has been reset. This
behavior occurs through the formula:

�
∧

k=2,...,
m−1

(
¬yiout,k⇒

(
(yiout,k−1 ∧©¬yiout,k−1)⇒© yiout,k

))
(9)

Additionally, for each k = 1, . . . ,m − 1, we require that
each yiout,k be reset only when the robot has left the current
region; specifically,

�
∧

πiα∈APR,
k=1,...,m−1

(
yiout,k ⇒

(
(πiα ∧©πiα)⇔© yiout,k

))
. (10)

Finally, as long as some yiout,k is set, we also set the dead-
lock flag memory proposition yiα corresponding to the re-
gion Rα that the robot had immediately departed. That is,

�
∧

πiα∈APR

(
(πiα ∧

∨
k=1,...,m−1

yiout,k)⇒© yiα

)
. (11)

This prevents the robot from re-entering the region from
which it just departed.

The safety revisions restrict the system’s moves in the
execution sequence be ones that actively take it m away
from the location where the deadlock flag was raised. Since
waiting in a region is disabled in (4), and reentering a re-
gion is disabled in (11), these safety revisions will cause the
system to move m steps away from deadlock in finite time.

In general, setting m large, could lead to behavior that
“explores” more of the workspace, but also could result in

unrealizability. Consider again the scenario in Fig. 5, but
with R2 always blocked. In this case, m = 3 would result in
an unrealizable specification because the robot cannot make
three discrete steps away from R6 without entering R2. Such
design tradeoffs therefore depend on the workspace and its
partitioning. Automatic selection of m for a given specifica-
tion and collection of regions is the subject of future work,
as is the use of � � liveness formulas to resolve livelock in
a more direct manner similarly to [4, 11] while remaining
scalable to the number of robots on the team.

6 Offline Synthesis: Environment Assumptions and
Coordination

If the specification ϕabstr is synthesizable, then Problem
2 has been solved and no further modifications to the ab-
stracted specification are necessary. But, the possible pres-
ence of humans or other uncontrollable agents in some parts
of the environment may cause the abstracted specification to
be unrealizable. Then, it becomes necessary to solve Prob-
lem 3 to find a minimal set of environment assumptions that
restores the guarantees.

We automatically generate assumptions on the environ-
ment’s behavior in cases where the modified specification is
unrealizable. To prevent any unreasonable assumptions (as-
sumptions that the robot can overcome deadlock when it is
impossible to do so), we provide a means for coordinating
robot actions to prevent such assumptions from being given
to the user. Combining the encoding and revisions approach,
we formally show that the synthesized automaton is guaran-
teed to fulfill the task under these assumptions, showing that
our approach also removes the possibility of deadlock and
livelock from occurring.

6.1 Runtime Certificates for the Environment

We note that the dynamic obstacles are uncontrollable agents,
and lacking behavioral information, so altering environment
assumptions does nothing to characterize their behavior. Rather,
we may still provide the user with a certificate under which
the environment’s behavior will guarantee that the team can
achieve all its goals without being trapped permanently in a
state of deadlock or livelock. Such assumptions can be given
to the user to allow him/her to be mindful of any condemn-
ing situations when co-inhabiting the robots’ environment.
As such, we call these added assumptions runtime certifi-
cates.

When a specification is unrealizable, there exist environ-
ment behaviors (called environment counterstrategies) that
prevent the system from achieving its goals safely. Here we
build upon the work of [4, 11, 28], processing synthesized
counterstrategies to mine the necessary assumptions. Rather
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than synthesize assumptions from the counterstrategy as in [4],
which requires specification revision templates to be spec-
ified by hand, we automate the counterstrategy search by
searching for all deadlock occurrences, then store the corre-
sponding conditions as assumptions.

We denote Cϕabstr as an automaton representing the coun-
terstrategy for ϕabstr. Specifically, a counterstrategy is the
tuple Cϕabstr = (Q,Q0,X ,Y, δ, γX , γY), where Q is the
set of counterstrategy states; Q0 ⊆ Q is the set of initial
counterstrategy states; X , Y are sets of propositions in AP ;
δ : Q × 2Y → 2Q is a transition relation returning the set
of possible successor states given the current state and valu-
ations of robot commands in Y; γX : Q → 2X is a labelling
function mapping states to the set of environment proposi-
tions that are True for incoming transitions to that state; and
γY : Q → 2Y is a labelling function mapping states to the
set of system propositions that are True in that state. We
compute Cϕabstr using the slugs synthesis tool [16].

To find the graph cuts in the counterstrategy graph that
prevent the environment from impeding the system, we first
define the following propositional representation of state q ∈
Q as ψ(q) = ψX (q) ∧ ψY(q), where

ψY(q) =
∧
π∈γY(q) π ∧

∧
π∈Y\γY(q) ¬π,

ψX (q) =
∧
π∈γX (q) π ∧

∧
π∈X\γX (q) ¬π.

Next, letting δY(p) = {q ∈ Q|∃π ∈ Y : q ∈ δ(p, π)}, the
set of cut transitions Scuts is computed as Scuts = {(p, q) ∈
Q2 | q ∈ δY(p), ψ(p)∧ψ(q) |=

∨
i∈[1,nrobots]© θiS}. Scuts

collects those transitions on which the environment has in-
tervened (by setting deadlock) to prevent the system from
reaching its goals.

Finally, the following safety assumptions are found:

ϕerev = �
∧

(p,q)∈Scuts

(ψY(p) ∧ ψX (p) =⇒ ¬©ψX (q)) (12)

If any of the conjuncts in (12) falsify the antecedant of ϕ
(the environment assumptions), they are discarded. Then, set
[ϕet ]

rev = ϕet ∧ ϕerev and construct the final revised specifi-
cation ϕrev = ϕei ∧ [ϕet ]

rev ∧ ϕeg =⇒ [ϕsi ]
′ ∧ [ϕst ]

′ ∧ ϕsg .
Algorithm 1 expresses our proposed approach for re-

solving deadlock. The automatically generated assumptions
act to restrict the behavior of the dynamic obstacles. Each
revision of the high-level specification excludes at least one
environment move in a given state. Letting | · | denote set
cardinality, with 2|X | environment actions and 2|Y| states,
at most 2(|Y|+|X |) iterations occur, though in our experience
far fewer are needed. The generated assumptions are mini-
mally restrictive – omitting even one allows the environment
to cause deadlock, resulting in unrealizability. Note that the
parsing step in line 8 creates statements that are displayed to
the user. The user display step is explained in detail in the
implementation in Sec. 9.

Algorithm 1 Find realizable ϕrev fulfilling task ϕ and re-
solving deadlock.

1: ϕabstr ← ϕei ∧ ϕet ∧ ϕeg =⇒ [ϕsi ]
′ ∧ [ϕst ]

′ ∧ ϕsg
2: [ϕet ]rev ← ϕet
3: ϕrev ← ϕei ∧ [ϕet ]rev ∧ ϕeg ⇒ [ϕsi ]

′ ∧ [ϕst ]
′ ∧ ϕsg

4: while ϕrev is unrealizable do
5: Extract Cϕrev from ϕrev

6: ϕerev ← Eq. (12)
7: for each kth conjunct of ϕerev s.t. ϕerev[k] ∧

[ϕet ]rev 6=False do
8: Parse ϕerev[k] into human-readable statements and display

to user.
9: [ϕet ]rev ← [ϕet ]rev ∧ ϕerev[k]

10: end for
11: ϕrev ← ϕei ∧ [ϕet ]rev ∧ ϕeg ⇒ [ϕsi ]

′ ∧ [ϕst ]
′ ∧ ϕsg

12: end while

In practice, many of the added environment safety state-
ments can be violated by dynamic obstacles at runtime with-
out consequence, if these violations can be assumed to be
temporary. For this reason, we introduce a recovery scheme
that synthesizes a strategy that allows environment safety
assumption violations to be tolerated. We refer the reader
to [43] for these technical details of the details of this strat-
egy. Note that we modify the approach to attempt a recov-
ery only for violations of the newly added assumption ϕerev ,
rather than for the entire formula [ϕet ]

′, since our goal is to
only make assertions on the environment’s behavior with
respect to deadlock and not all behaviors in general. The
requirement for temporary deadlock is less restrictive than
the requirement that deadlocks should never occur, but it
nonetheless places additional requirements on the environ-
ment’s behaviors, i.e. that the dynamic obstacles cannot in-
finitely often cause deadlock. Hence such conditions are dis-
played to the user in an easily-interpretable form.

Runtime certificates are displayed to the user in a format
such as: The task is guaranteed as long as
for robot 1 any singleton deadlock in
the kitchen while heading to the door is
eventually resolved on its own. In this specific
case, dynamic obstacles may enter deadlock with robot 1,
but the obstacles are obligated to eventually resolve dead-
lock. If the dynamic obstacle is a person, the certificate may
have no impact on the true behavior of the environment, as
social norms deem it natural for people to resolve deadlocks
on their own. If the dynamic obstacle is a door, then the cer-
tificate could alert that the door should eventually be opened
to allow the robot to pass through. On the other hand, if the
door never opens, then the certificate could help to explain
that the door being closed as the reason the task remains un-
fulfilled.

It is possible that many such certificates are required,
which may overwhelm the user. We address this in two ways.
First, we project the found certificates onto the set of propo-
sitions relating to motion only, eliminating any propositions
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that do not relate to motion. Second, we use a graphical vi-
sualization of the certificates overlaid on a map of the physi-
cal workspace. In addition to the above provisions, the work
in [11] offers an approach that can be adopted to further re-
duce the number of revisions fed to the user. There, a method
is introduced for grouping regions that share the same prop-
erties for the revisions, and convey to the user metric infor-
mation that is necessary for fulfilling the added revisions.
Such an integration is left for future work. We refer the
reader to Sec. 9 for implementation details.

6.2 Coordination Between Robots

Since the strategy for the robots’ motion is completely deter-
mined at synthesis time, the controllers we synthesize should
not lead to deadlocks if they can be safely avoided. For in-
stance, two robots on the team should not enter a narrow
doorway from opposite ends, only to become deadlocked
there. This motivates the creation of a method for automati-
cally inserting dimension-related information into the spec-
ification based on the workspace geometry and the volume
of the robot so that the robots can pre-coordinate, at synthe-
sis time, to avoid unneeded deadlock. This pre-coordination
serves two purposes: 1) it allows to eliminate any environ-
ment assumptions between two robots in a region where
there is high likelihood of deadlock if both are occupying
that region, and 2) it changes the behavior of the agents to
actively avoid potential deadlock in such high-risk regions,
such as one-way corridors.

The modification considers the restrictions on what robots
are allowed to do in certain regions, based on the dimen-
sion of the region and the size of the robot. We introduce
an encoding of LTL formulas that eliminate the actions of
robots that would result in deadlock. Specifically, we con-
sider two cases: 1) a robot will not enter a region if the
move will exceed the region’s capacity and, 2) it will be pre-
vented that two or more robots enter through opposite sides
a one-way narrow region. We then create a new specification
ϕabstr,coord with pre-coordination of robots, and apply Al-
gorithm 1 on ϕabstr,coord by swapping out ϕabstr in line 1.

To create the LTL encoding, we introduce Algorithm 2
to enforce pairwise coordination amongst robots in the con-
trolled team. If the region is too small to contain a pair of
robots, any robot outside of the region is prevented from
entering (line 6). If the boundary between two regions Rα
and Rβ is too small for two robots to pass through at once,
and one robot is approaching the boundary from Rα (resp.
Rβ), then no other robot may approach that boundary if in
Rβ (resp. Rα). This requirement is encoded in lines 11–12.
Note that Algorithm 2 is general to any workspace with con-
vex regions.

Algorithm 2 Augmenting a specification with agent coordi-
nation with respect to region geometry.
1: D ← max dimension of the enclosing hull of the robots on the

team
2: for each Rα ∈ R do
3: A← area of region Rα
4: if A

D
< 1 then

5: // Region capacity is too small
6: ϕst ← ϕst ∧ (©πiα =⇒ ¬©πjact,α) ∧ (©πjα =⇒
¬©πiact,α)

7: end if
8: for each Rβ ∈ Adj(Rα) do
9: if ‖Rα ∩Rβ‖ < 2D then

10: // Boundary between Rα and Rβ is too narrow
11: ϕst ← ϕst ∧∧nrobots

i,j=1

(
(ψiαβ ∧©πjβ) =⇒ ©¬πjact,α

)
12: ϕst ← ϕst ∧∧nrobots

i,j=1

(
(ψiβα ∧©πjα) =⇒ ©¬πjact,β

)
13: end if
14: end for
15: end for

7 Online Local Motion Planning

In this section we describe the local planner that links the
mission plan with the physical robot (recall Fig. 4). The
offline synthesis and generated state machine are agnostic
to the local planner, which can be substituted as long as
avoidance of unmodeled moving obstacles is guaranteed.
Our online local planner does account for the robot dynam-
ics, which were abstracted for high-level synthesis.

At each step of the online execution, the synthesized
strategy automaton provides a desired goal position for each
robot and a preferred velocity ū ∈ Rn towards it. An overview
of the algorithm is given in Algorithm 3 and each step is de-
scribed in detail in the following sections. We note that the
reader may choose any other method for online planning as
long as it preserves the avoidance guarantees with the kine-
matic model of the robots.

7.1 Overview

We build on the work on distributed Reciprocal Velocity Ob-
stacles with motion constraints [2], and its recent extension
to aerial vehicles [3].

As described by [2], the method follows two ideas. (a)
The radius of the robot is enlarged by a pre-defined and typ-
ically fixed value ε > 0 for collision avoidance. This value
depends on the kinodynamic model of the robot and can be
reduced in real time without having to recompute the stored
maximum tracking errors. And, (b) in run time, the local
trajectories are limited to those with a tracking error below
ε with respect to their reference trajectory. Recall that the
tracking errors where precomputed in the offline process.
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At each time-step an optimal reference velocity u∗ ∈ Rn
is obtained by solving a convex optimization in reference ve-
locity space. The associated local trajectory is guaranteed to
be collision-free, satisfies the motion constraints and mini-
mizes a cost function. The cost function minimizes the de-
viation to a preferred velocity ū, corrected by a small re-
pulsive velocity ů inversely proportional to the distance to
the neighboring obstacles when in close proximity. As de-
scribed by [3] this additional term introduces a desired sepa-
ration between robots and obstacles. Note that the avoidance
guarantees arise from the constrained optimization and not
from the repulsive velocity.

7.2 Robot Dynamics

Letting t ∈ R+ denote time and tk the current time instant,
we define the relative time t̃ = t − tk ∈ [0, . . . ,∞) and
the time horizon of the local planner τ > 0, greater than
the required time to stop if moving at maximum speed. Note
that different robots may present different dynamic models.
We denote the state of a robot by z = [p, ṗ, p̈, . . . ], which
includes its position and velocity and may include additional
terms such as acceleration and orientation. Given a control
input ν(t) the dynamical model is ż = g(z, ν).

In our local planner, we consider a set of candidate local
trajectories, each defined by a straight-line reference pref(t̃) =

p + ut̃ of constant velocity u ∈ Rn and starting at the
current position p of the robot. Each motion primitive is
then given by an appropriate trajectory tracking controller
probot(t̃) = f(z,u, t̃) that is continuous in the initial state z
of the robot, respects its dynamical model and converges to
the straight-line reference trajectory. Local trajectories are
now parametrized by u, see Fig. 6 for an example. Suitable
controllers defining the function f(z,u, t̃) include LQR con-

Algorithm 3 Execution of the local planner using the syn-
thesized strategy automaton.
1: Input: Current state of the robot, a local map, position and velocity

of neighbors and a synthesized strategy automaton (FSM).
2: At each time instance (∼ 10 Hz) do the following:
3: if the robot is in deadlock with any other agent then
4: Send a deadlock flag to the FSM.
5: end if
6: Obtain command from the FSM (e.g. ”stay in the current room”

or ”move to the next room”), based on current state and deadlock
flag.

7: Convert command into a goal position and preferred velocity ū.
8: Compute constraints to satisfy the dynamic model of the robot.
9: for each neighboring agent do

10: Compute pairwise collision avoidance constraint.
11: end for
12: Compute largest obstacle-free convex region wrt static obstacles.
13: Solve constrained optimization to obtain collision-free motion
14: Output: A collision-free motion for the robot and the time horizon

Fig. 6: Schema local and reference trajectories for an aerial
vehicle, generated from the reference velocity u. The track-
ing error is limited by ε and the robot volume dilated by ε.

trol and second order exponential curves, for ground robots [2]
and quadrotors [3].

For fixed robotic platform, controller, initial state z and
reference velocity u, the maximum deviation (initial posi-
tion independent) between the reference and the simulated
trajectory is given by

γ(z,u) = max
t̃>0
||(p + t̃u)− f(z,u, t̃)||2. (13)

In an offline procedure, we precompute the maximal track-
ing errors γ(z,u) via forward simulation of the robot dy-
namics and controller f(z,ui, t̃) for a discretization of ref-
erence velocities u and initial states z - we only discretize
in initial velocity since the error is independent of the ini-
tial position of the robot. They are stored for online use in a
look-up table.

7.3 Constraints

To define the motion and inter-agent avoidance constraints
we build on the approach in [3]. We additionally introduce
constraints for avoiding static obstacles. For completeness,
we give an overview of each of the constraints.

7.3.1 Robot dynamics

Recalling Eq. (13) the motion constraint is given by the ref-
erence velocities for which the tracking error is below ε,

R(z, ε) = {u | γ(z,u) ≤ ε}. (14)

approximated by the largest inscribed convex polytope/el-
lipsoid R̂(z, ε) ⊂ R(z, ε).

7.3.2 Avoidance of other agents

Denote by pj , vj , r̄j and h̄j the position, velocity, dilated
radius and height of a neighboring agent j. Assume that it
keeps its velocity constant for t̃ ≤ τ . Reciprocity (i.e. the
other agent follows the same algorithm) can as well be as-
sumed and is discussed in [3]). For every neighboring agent
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j, the constraint is given by the reference velocities u for
which the agents’ enveloping shape do not intersect within
the time horizon. For cylindrically-shaped agents moving in
3D the velocity obstacle of colliding velocities is a truncated
cone

V Oτj = {u | ∃t̃ ∈ [0, τ ] : ‖pH − pHj + (uH − vHj )t̃‖ ≤ r̄ + r̄j
and |pV − pVj + (uV − uVj )t̃| ≤ h̄+ h̄j},

where p = [pH , pV ], with pH ∈ R2 its projection onto the
horizontal plane and pV ∈ R its vertical component. The
constraint is linearized toAj(p, ε) = {u |nTj u ≤ bj}, where
nj ∈ R3 and bj ∈ R maximize nTj v−bj subject toAj(p, ε)∩
V Oτj = ∅.

7.3.3 Avoidance of static obstacles

We extend a recent fast iterative method to compute the
largest convex polytope in free space [13], by directing the
growth of the region in the preferred direction of motion
and enforcing that both the current position of the robot and
a look ahead point in the preferred direction of motion are
within the region. The convex polytope is computed in po-
sition space (R3 for aerial vehicles) and then converted to
an equivalent region in reference velocity space. See Algo-
rithm 4, where directedEllipsoid(p,q) is the ellipsoid with
one axis given by the segment p− q and the remaining axis
infinitesimally small, andK the number of steps in the linear
search, typically between 2 and 4.

7.3.4 Avoiding incorrect region transitions

The local planner prevents incorrect region transitions (for
instance, avoiding entering another region if the robot’s lo-
cal goal is within the current one) by introducing “virtual”
doors at borders between workspace regions. These virtual
doors may be closed or opened depending on the desired
transition. A closed door is introduced as an obstacle in O.

Algorithm 4 Largest collision-free directed convex poly-
tope.

1: L← p + ū{τ, K−1
K

τ, K−2
K

τ, . . . , 0}; P := ∅;
2: q← L[0]; L := L \ q;
3: while L 6= ∅ and p, q /∈ P do
4: E← directedEllipsoid(p, q)
5: // Largest polytope seeded in E computed as in [13]
6: while not converged do
7: P← separating planes of E and dilatedO (QP)
8: such that P ⊂ Rn \ (O + Vε)
9: If p, q /∈ P then { q← L[0]; L := L \ q; break; }

10: E← ellipsoid E ⊂ P of maximal volume (SDP)
11: end while
12: end while
13: F (p, ε) := (P− p)/τ // Converts to ref. velocity, u, space

7.4 Optimization

The optimization cost is given by two parts. As described in
Sec. 7.2, the first one is a regularizing term, weighted by a
design constant ᾱ, and the second one is a minimizer with
respect to a preferred velocity.

A convex optimization with quadratic cost and linear and
quadratic constraints is solved

u∗ := arg min
u∈Rn

(α||u− v||2 + ||u− (ū + ů)||2),

s.t. u ∈ R̂(z, ε) ∩ F (p, ε)
u ∈ Aj(p, ε) ∀j neighbor agent

(15)

The solution of this optimization is a collision-free ref-
erence velocity u∗ which minimizes the deviation towards
the goal specified by the strategy automaton. The associ-
ated trajectory (see Sec. 7.2) is followed by the robot and
is collision-free.

7.5 Deadlock Detection

To allow the strategy automaton to resolve deadlock at run-
time, we set the deadlock proposition xij (i = 1, . . . , nrobots,
j = 0, . . . , nrobots; j = 0 implying a dynamic obstacle), ac-
cording to the following rule:

xij ⇐ (‖u∗i ‖ < k1) ∧ (‖ūi‖ > k2) ∧ (‖pi − pj‖ < k3), (16)

with k1, k2, k3 > 0 being tunable parameters. This states
that a necessary condition for xij to be set is when the agent
velocity magnitude ‖u∗i ‖ is low, the preferred velocity mag-
nitude ‖ūi‖ is high, and the unsigned distance between agents
‖pi − pj‖ is within a prescribed tolerance. In our experi-
ments these values are chosen experimentally to detect all
deadlocks while minimizing false positives. We introduce a
small hysteresis in the flag activation. In particular, we acti-
vate the deadlock flag when the right-hand condition of (16)
has been True for a minimum period of time Tdk−true. When
the flag becames active, xij is kept in True for a minimum
period of time Tdk−false. In our experiments we employ 8s

and 5s respectively. This hysteresis prevents false alarms
and chattering when the velocity is small (e.g. while the
robot is accelerating).

8 Theoretical Guarantees

We provide proofs for the guarantees inherent to our synthe-
sized controller. The following three subsections are suffi-
cient to show that, under the collision-free guarantees pro-
vided by the local planner, the synthesized strategy realizes
the reactive task specification and resolves deadlocks.
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8.1 Correctness With Respect to Robot Dynamics

By construction of the local planner, the controller is guaran-
teed correct with respect to the low-level controller f(z,u, t̃),
which is continuous on the initial state of the robot and re-
spects its dynamics. We do assume that the model of the
robot is accurate and that there are no external disturbances.

8.2 Collision-Free Motion

Theorem 1 The local planner of Sec. 7 yields collision-free
motion in dynamic environments, under the constant velocity
assumption.

If (15) is feasible, collision-free motion is guaranteed for
the local trajectory up to time τ with the assumption that all
interacting agents maintain a constant velocity.

Proof. Avoidance of dynamic obstacles was shown in our
previous work [3]. Here we reproduce it for the case of a
dynamic obstacle maintaining a constant velocity, and it ex-
tends to the case where all agents do reciprocal collision
avoidance.

Recall that tk represents the current time instant and
t̃ = t − tk ∈ [0,∞) the relative time. Let p(t) denote the
position at time t ≥ tk, and if not specified, variables are
evaluated at tk. The idea is that the optimal reference trajec-
tory is collision-free for an agent whose volume is enlarged
by ε and the robot stays within ε of it. Formally,

(p + ut̃)− (pj + vj t̃) /∈
Avoidance constraint, u∈Aj(p,ε)

Vε + Vj ⇒

⇒
u∈R̂(z,ε)

p(t)− pj(t) = f(z,u, t̃)− (pj + vj t̃) /∈ V + Vj

For the case of planar disk robots, this is equivalent to
showing the relative distance is greater than the sum of radii,

||p(t)− pj(t)|| = ||f(z,u, t̃)− (pj + vj t̃)|| ≥
u∈R̂(z,ε)

||(p + ut̃)− (pj + vj t̃)|| − ε ≥
u∈Aj(p,ε)

r + ε+ rj − ε = r + rj ,

For avoidance of static obstacles, u ∈ F (p, ε) implies

u ∈ F (p, ε) ⇒
Alg. 4, P convex

(p + ut̃) /∈ O + Vε ∀t̃ ∈ [0, τ ]

⇒
u∈R̂(z,ε)

f(z,u, t̃) /∈ O + V ∀t̃ ∈ [0, τ ].

If the assumptions are violated, e.g. the moving obsta-
cles quickly change their velocity, the constrained optimiza-
tion of Eq. (15) can be infeasible. In that case, no collision-
free solution exists that respects all of the constraints and
a collision may arise. In this case the robot decelerates at

its maximum deceleration rate until full stop or a feasible
collision-free trajectory is found. In practice, since this com-
putation is performed at a high frequency, each individual
robot is able to adapt to changing situations, and the result-
ing motion is collision-free if the moving obstacles behave
fairly (i.e. never cause collisions).

8.3 Correctness with Respect to the Task Specification

Since the local planner is myopic, it provides guarantees up
to a time horizon τ and consequently may result in deadlock
and livelock. However, as we have shown, the planner’s lo-
cal guarantees allow a discrete abstraction that the strategy
automaton can use to resolve deadlocks and avoid livelocks.
Here we formally prove the guarantees on the execution pro-
vided by our synergistic online and offline synthesis.

Proposition 1 Given a task specification ϕ that ignores col-
lisions, if the resulting specification ϕabstr defined in Sec. 5
is realizable, then the corresponding strategy automaton also
realizes ϕ.

Proof. Assume given ϕ = ϕei ∧ϕet ∧ϕeg =⇒ ϕsi ∧ϕst ∧ϕsg .
Recall that ϕabstr = ϕei ∧ ϕet ∧ ϕeg =⇒ [ϕsi ]

′ ∧ [ϕst ]
′ ∧ ϕsg ,

where [ϕsi ]
′ and [ϕst ]

′ contain ϕsi and ϕst as subformulas, re-
spectively. Suppose that strategy automatonAϕabstr realizes
ϕabstr. This means that the resulting controller is guaranteed
to fulfill the requirement [ϕsi ]

′∧ [ϕst ]
′∧ϕsg as long as the en-

vironment fulfills the assumption ϕei ∧ϕet ∧ϕeg . This implies
that Aϕabstr fulfills ϕsi ∧ϕst ∧ϕsg as long as the environment
fulfills the assumption ϕei ∧ ϕet ∧ ϕeg.

Proposition 2 Given a task specification ϕ that ignores col-
lisions, ifϕ is realizable but the resulting specificationϕabstr

is not realizable, then the revision procedure in Sec. 6.1 will
find an assumption ϕerev to add to ϕabstr that renders the re-
sulting specification ϕrev realizable and the resulting strat-
egy Aϕrev free of deadlock and livelock.

Proof. Suppose ϕ is realizable by strategyAϕ, but ϕabstr is
not realizable, admitting counterstrategy Cϕabstr = (Q, . . .).
It suffices to show that the set Scuts is nonempty. Assume
by way of contradiction that Scuts is empty. Then the ris-
ing edge of deadlock θis never occurs for any i, so no robot
transitions are ever disabled. Since we assume that dead-
lock does not occur in the initial state, this means that xij

is always False for every i,j. Therefore [ϕsi ]
′ ∧ [ϕst ]

′ ∧ ϕsg
defined in Sec. 5 reduces to ϕsi ∧ϕst ∧ϕsg . The lack of dead-
lock means that any region transition contained inAϕ is still
admissible, and thereforeAϕ can be used as a strategy to re-
alize ϕabstr, a contradiction. Therefore, there must be dead-
lock and Scuts is not empty. Now, upon addition of the as-
sumptions ϕabstr, existence of Aϕrev that satisfies ϕabstr

implies, by construction, that Aϕrev is livelock-free.
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Note that it may be the case that Scut is nonempty, but
for every (p, q) ∈ Scuts, the resulting revision

(ψY(p) ∧ ψX (p) =⇒ ¬©ψX (q))

contradicts ϕte. This indicates that ϕ is only realizable be-
cause it makes unreasonable assumptions on the environ-
ment. Our approach identifies this fact as a by-product of
the revision process.

8.4 Computational Complexity

For a given choice of m, the offline reactive synthesis al-
gorithm used in this work is exponential in the number of
propositions [8, 16]. Using our encoding, the problem scales
linearly with nrobots – no worse than existing approaches
(e.g. [41]). When one or more dynamic obstacles are con-
sidered, the number of propositions does not change. As
stated in Sec. 6, 2(|Y|+|X |) iterations of the main loop in
Algorithm 1 are needed in the worst case, yielding a the-
oretical complexity that is doubly exponential in the number
of propositions.

For the online component, a convex program is solved
independently for each robot, with the number of constraints
linear in the number of neighboring robots. The runtime of
the iterative computation of the convex volume in free space
barely changes with the number of obstacles, up to tens of
thousands [13], and a timeout can be set, with the algorithm
returning the best solution found.

9 Experiments and Simulations

We present results of our end-to-end approach both in simu-
lation and on hardware. Our evaluation is meant to illustrate
the various parts of the synthesis and execution process, and
provide a statistically-grounded evaluation of the approach
when placed in a difficult environment that does not neces-
sarily behave according to the automatically-generated envi-
ronment assumptions. In this context, our results reveal that
our approach has merit in dealing with such environments to
execute the task successfully. We furthermore show that our
approach is scalable to any number of dynamic obstacles,
and that the local planner applies to 3-D workspaces. Lastly,
we show that our approach may be executed in real time on
actual hardware.

The synthesis procedure described in Sec. 5 was imple-
mented with the slugs synthesis tool [16], and executed
with the LTLMoP toolkit [19]. The local motion planner,
Sec. 7, was implemented with the IRIS toolbox [13] and an
off-the-shelf convex optimizer. We assume the dynamic ob-
stacles are cooperative in avoiding collisions, therefore, each
one is controlled by a local planner. Many of the experiments

presented in this section are available in the accompanying
video.

In what follows, we consider a “garbage collection” sce-
nario, upon which we synthesize a strategy automaton.

Example 2 (Garbage Collection) A robot team is required
to patrol the Living Room (RLR) and Bedroom (RBR) of the
workspace in Fig. 7. For two robots, the specification is:

� �(π1
LR) ∧� �(π1

BR) ∧� �(π2
LR) ∧� �(π2

BR)

and if garbage is observed, pick it up

�(π1
garb =⇒ π1

act,pickup) ∧�(π2
garb =⇒ π2

act,pickup).

Additionally, the robots must always avoid other moving
agents.

The system propositions are actions to move between
regions (πiact,LR, . . . , π

i
act,BR) and to pick up (πiact,pickup).

The environment propositions are sensed garbage (πigarb),
region completions (πiLR, . . . , π

i
BR), and pick up comple-

tion (πipickup).
We omit the complete encoding of Def. 2, however, for

illustration we supply the transition formulas for the case
where robot 1 is in Hall:

ϕst :


�(π1

Hall ∨ π1
LR ∨ π1

BR ∨ π1
Kitchen ∨ π1

Door)

�(©π1
Hall =⇒©π1

act,Hall ∨©π1
act,BR ∨©π1

act,LR)

ϕet :



�(π1
act,Hall ∨ π1

act,LR ∨ π1
act,BR ∨ π1

act,Kitchen∨
π1
act,Door)

�(π1
Hall ∧ π1

act,Hall =⇒©π1
Hall)

�(π1
Hall ∧ π1

act,LR =⇒©π1
Hall ∨©π1

LR)

�(π1
Hall ∧ π1

act,BR =⇒©π1
Hall ∨©π1

BR)

The initial conditions ϕsi and ϕei are True.

We implement the above example using humanoid robots
(able to rotate in place, move forward and along a curve) and
simulated quadrotor UAVs.

9.1 Synthesis and Revisions

Upon synthesizing a controller for single robot, we obtain
16 revisions to the environment assumptions. These are dis-
played to the user as runtime certificates. One example is:
Deadlock should not occur when the robot is in

the Hall moving toward the Living Room and had

already been blocked from entering the Bedroom.

Note that, with each robot added to the team, the number of
revisions grows combinatorially. In contrast to the single-
robot case, there are a total of 1306 statements given to the
user in the case of two robots. In these cases, we display the
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Fig. 7: Workspace showing specification revisions for each
region completion/activation pairs where singleton or pair-
wise deadlock may occur. An arrow’s color indicates the
type of assumption that has been made. The number (or pair
of numbers) indicates the robot (or robot pairs) concerned
with the assumption. The placement of the arrow indicates
the region that the robot is headed (i.e. its action commands
AP actR ) when the given assumption holds true.

revisions graphically, by projecting over the variables of in-
terest: the current region and action for each robot. Rather
than displaying all 1306 statements, we show the projection
consisting of 45 statements projected onto the set of each
robot’s motion and activation propositions. Satisfying these
45 statements implies that we also satisfy the 1306 state-
ments. To further aid the user, we display them graphically
on the workspace as shown in Fig. 7.

For instance, a red arrow on the boundary of the Hall
indicates that the automaton cannot guarantee the task if
the robot experiences deadlock when it is in the Hall and
while activating a motion to the Living Room. The certifi-
cates displayed in Fig. 7 are projections onto a subset of
the complete set of propositions (i.e. deadlocks, memory
propositions, robot positions, and robot actions for each of
the robots in the team), by abstracting those variables away.
That is, if there exist restrictions on deadlock for any of the
propositions that have been abstracted away, then the revi-
sion displayed will be a conservative overapproximation to
the true revision and the dot will be labeled red.

9.2 Scalability with Respect to Dynamic Obstacles

Considering Example 2, the specification for the single-robot
case consists of 14 propositions, while that for the two-robot
case consists of 29 propositions. The specification is invari-
ant to the number of dynamic obstacles in either case.

One could also consider a two-robot team controlled by
a baseline strategy that relies on mutual exclusion (one robot
per region) to be kept with other robots and dynamic ob-
stacles (DO). That strategy required 20 propositions for the

case without DOs. One additional proposition is added for
each region for each DO (producing 25 for one DO, 35 for
three DO, 60 propositions for eight DO, etc.). Because the
obstacles are assumed to behave in an adversarial manner,
they can violate mutual exclusion if they enter a neighboring
region of the robot. Hence, the baseline synthesis procedure
is not realizable for one or more dynamic obstacles.

In contrast, our approach is realizable independently of
the number of dynamic obstacles and requires fewer propo-
sitions than the case with two or more DO.

9.3 Performance Evaluation

We directly compare the proposed approach with a baseline
approach where the robots execute a local planner, but there
is no deadlock resolution in the strategy. Recall that there is
no guarantee of mission satisfaction in that case. Figs. 8, 9
and 10 display results for various problem scenarios. In each
experiment, we use the model described in [3] to model the
robots and dynamic obstacles as quadrotors. The “counter-
flow” cases follow a pre-defined set of waypoints that al-
low DOs to circulate within the workspace in one direction
(counter to the flow of the robots), while, in the “random
waypoints” cases, DOs randomly select a neighboring way-
point once a waypoint has been achieved. To detect dead-
lock, we use the criteria in (16) with the choice of parame-
ters k1 = 1

3 , k2 = 1
4 , and k3 = 1.5.

Each test case consisted of 133 minutes of data obtained
over multiple simulation runs lasting 200 seconds each. The
simulation was terminated before 200 seconds if none of the
controlled robots reached their goal, but none had been mov-
ing (their velocity falls below a threshold) for 100 seconds or
longer. Any such runs were flagged as unresolved deadlock,
at which point the robots are deemed unable to continue their
task. The robots in the team were initialized randomly at dif-
ferent regions in the workspace.

In the “counter-flow” example of Fig. 10, 100% of the
simulation runs without the proposed deadlock resolution
approach eventually enter unresolved deadlock at some point
during the run. In contrast, when the proposed approach is
used, deadlock is able to be resolved, resulting in more goals
being visited. In the single-robot case, only 5% of the runs
lead to unresolved deadlock. In all such runs, the DOs had
violated a runtime certificate (note that the DOs were not
programmed to satisfy any such certificates); in some cases
the DOs surrounded the robot. In the two-robot case, nearly
20% of the runs lead to unresolved deadlock. This number is
higher than in the one-robot case because there is more than
one robot whose motion could be blocked by the DOs, lead-
ing to more encountered deadlocks. Additionally, when one
robot has already become deadlocked, the objects in the en-
vironment effectively act as static obstacles to the remaining
robot, increasing the chance it will become deadlocked as
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(a) Without deadlock resolution (b) With deadlock resolution (c) Path with deadlock resolution

Fig. 8: Example of the approach in a scenario with six dynamic obstacles (dark red) and one controlled quadrotor (light
green/yellow). The path of the controlled quadrotor is shown with a dashed green line. (a) The original approach without
deadlock resolution avoids collisions but can get into unresolved deadlocks. The path leading to the deadlock is shown.
(b) The proposed approach successfully resolves deadlocks, like the one shown here. The path leading to and resolving the
deadlock are shown. (c) Path of the controlled quadrotor using the proposed approach during a ten minutes simulation. The
quadrotor successfully avoids collisions and reverts the motion when it encounters a deadlock.

compared with moving, dynamic obstacles. The combined
effect of these two factors is the reason why there is a four-
fold increase in the number of encountered deadlocks.

The “random waypoints” cases are included to evaluate
the performance of the proposed approach where the DOs
do not all move in the same direction, but instead move
randomly in the workspace. In the case of a single robot,
deadlock resolution allows the robots to find alternate routes
around deadlocks, and thus the robot is able to visit 40%
more goals than the case without deadlock resolution. In the
case of two robots, the team is able to achieve 136% more

Fig. 9: Example of the approach with six dynamic obstacles
(dark red) and two controlled quadrotors (light green). The
dynamic obstacles navigate to randomized locations and the
controlled robots execute the proposed framework. The path
of the controlled quadrotors is shown with a dashed green
line for one minute of the simulation. The quadrotors suc-
cessfully avoid collisions, reverse motion when they en-
counter a deadlock and explore the top and bottom rooms.

goals than without resolution. As may be observed in the
supplementary videos, deadlock resolution gives the robots
an ability to exploit areas of the workspace containing a
lower density of dynamic obstacles to achieve their goals.
The cases where deadlock resolution is included results in
greater likelihood of task achievement over a 200-second
interval. As compared with the counter-flow cases, there are
fewer cases of unresolved deadlock because the random na-
ture of the DOs allows the robots to move more freely in
some cases than in others.

9.4 3D Problem Domain

We next demonstrate the effectiveness of the approach in a
3D scenario where, in the 5×5×5 m3 two-floor workspace
of Fig. 11, robots move between floors through a vertical
opening at the left corner or the stairs at the right side. The
two robots on the team as well as the dynamic obstacle are
simulated quadrotors. The task is to infinitely often visit the
top and bottom floors while avoiding collisions and resolv-
ing deadlock. The strategy automaton is synthesized as de-
scribed in Sec. 5. A local planner for the 3D environment is
constructed following Sec. 7. A representative experiment
is shown in the snapshots in Fig. 11. The green robot enters
deadlock when moving towards the upwards corridor; how-
ever, deadlock is resolved by taking the alternative route up
the stairs.
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(a) # encountered deadlocks per 200-sec run (b) # goals visited per 200-sec run (c) # unresolvable deadlocks per 200-sec run

Fig. 10: Comparison of the results of the “garbage collection” scenario with DOs exhibiting counter-flow (CF) or random
waypoints (RW) behaviors, with either one quadrotor (1Q) or two quadrotors (2Q). For each scenario, we evaluate the
results for data collected over 40 200-sec runs. Six quadrotors were used for the DOs. Over each run, (a), (b), and (c) show,
respectively, data for the number of encountered deadlocks, the number of goals visited, and the number of unresolvable
deadlocks. Standard deviations are indicated as error bars in (a) and (b).

9.5 Physical Experiments

To demonstrate effectiveness in a physical setting, we em-
ploy two Aldebaran Nao robots to carry out the planar garbage
collection scenario, with a teleoperated KUKA youBot serv-
ing as the dynamic obstacle. The model for the Nao robots
is one where the robots are are able to rotate in place, move
forward, and move along a curve at a constant velocity. The
size of the field is 5m by 3m, and the sensing range for the
local planner is 1m. The size is such that only one Nao robot
may fit through the Hall and Door at a time. The positions
of each robot are measured through a motion capture sys-
tem. The local planner is implemented on a laptop computer
communicating via a WiFi connection to the robots. In the
local planner, the Nao robots are taken to have a circular
footprint with effective radius of 0.2 m.

We carried out experiments using two robots on the team,
using the workspace shown in Fig. 7. The revisions for these
two robots are pictured in the figure for the synthesized mis-
sion plan. As demonstrated in the snapshots in Fig. 12, the

Time: 5 – 15 sec. Time: 16 – 31 sec.

Fig. 11: Deadlock resolution (green robot) and safe naviga-
tion in a 3D environment. Quadrotors are displayed at the
final time and their paths for the time interval. Each yellow
disk represents a quadrotor and the cylinder its safety vol-
ume. The orange robot represents the dynamic obstacle.

Naos can execute the task, by avoiding collisions and resolv-
ing deadlocks with one another and with the dynamic obsta-
cle (the KUKA youBot). At the particular deadlock event
shown in Fig 12b, the youBot must eventually move away
from the Door region, as the assumption pictured in Fig. 7
states that ‘only temporary deadlock is allowed’ when ei-
ther of the robots are trying to enter it from the Kitchen.
The experiments demonstrate that the approach is effective
at deadlock resolution and at achieving collision free mo-
tion, thereby satisfying the mission specification.

10 Conclusion

We present a framework for synthesizing a strategy automa-
ton and collision-free local planner that guarantees comple-

(a) Avoidance maneuver (b) Deadlock resolution

Fig. 12: Planar scenario with two centrally-controlled Nao
robots and a dynamic obstacle (youBot). In each image,
three consecutive frames of the robot’s motion are superim-
posed. In (a), the local planner enables the two Naos to avoid
collisions with each other. In (b), one of the Naos reverses
direction to resolve the deadlock with the youBot.
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tion of a task specified in linear temporal logic, where we
consider reactive mission specifications abstracted with re-
spect to basic locomotion, sensing and actuation capabili-
ties. Our approach is less conservative than current approaches
that impose a separation between agents, and is computa-
tionally cheaper than explicitly modeling all possible obsta-
cles in the environment. If no controller is found that satis-
fies the specification, the approach automatically generates
the needed assumptions on deadlock to render the specifi-
cation realizable and communicates these to the user. The
approach generates controllers that accommodate deadlock
between robots or with dynamic obstacles independently of
the precise number of obstacles present, and we have shown
that the generated controllers are correct with respect to the
original specification. Experiments with ground and aerial
robots demonstrate collision avoidance with other agents and
obstacles, satisfaction of a task, deadlock resolution and live-
lock free motion. Future work includes optimizing the set of
revisions and decentralizing the synthesis.
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