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Abstract This paper addresses the problem of synthesizing controllers for
reactive missions carried out by dynamical systems operating in environments
of known physical geometry but consisting of uncontrolled elements that the
system must react to at execution time. Such problems have value in semi-
structured industrial automation settings, especially those in which robots
must behave collaboratively yet safely with their human counterparts. The
proposed synthesis framework addresses cases where there exists no satisfy-
ing controller for the mission, given the dynamical system and the environ-
ment’s assumed behaviors. We introduce an approach that leverages informa-
tion about an abstraction of the dynamical system to automatically generate
a concise set of revisions to such specifications. We provide a graphical vi-
sualization tool as a design aid, allowing the revisions to be conveyed to the
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user interactively and added to the specification at the user’s discretion. Any
accepted statements become certificates that, if satisfied at runtime, provide
guarantees for the current mission on the given dynamics. Our approach is cast
into a general framework that works with various discrete representations (i.e.
abstractions) of the system dynamics. We present case studies that illustrate
application of our approach to controller synthesis for two example robotic
missions employing different abstractions of the system.

Keywords formal methods · discrete abstractions · counterstrategies ·
reactive mission planning · dynamical systems

1 Introduction

As industrial processes, homes, and personal vehicles become more automated,
formal approaches to mission planning are particularly appealing as a means
to creating reliable controllers. Such controllers find utility when complicated
tasks must be carried out in collaborative, human environments in which hu-
man safety is a primary concern. Automated synthesis of controllers from
high-level specifications also frees users from the burdens of directly program-
ming controllers that satisfy complex tasks. Previous works have focused on
tools for automatically synthesizing discrete controllers for carrying out high-
level mission plans expressed as formal mission specifications, e.g. [25,14,30,
12].

Application of such techniques to physical systems requires the addition of
discrete abstractions that represent a physical system that must execute the
mission (for instance, the dynamics of a mobile robot or a robotic manipula-
tor). Several works have focused attention on computational approaches for
obtaining such abstractions that represent a system’s dynamics in structured
environments; see [11,24,32]. The body of work in computational tools for
generating abstractions have enabled others to develop methods for synthesis
of mission plans using systems ranging from simple single or double integra-
tors ([10,14]) and piecewise linear models ([27,31]) to nonlinear ([11,2,30,32,
29]), switched ([18]) and hybrid systems ([19]). Synthesis for switched systems
was considered in [18,17], where the authors propose methods for computing
fine-grained abstractions and switching protocol synthesis for reactive tasks.
Tools for automatically synthesizing controllers based on high-level specifica-
tions written over task-oriented abstractions of nonlinear systems have been
introduced recently in [6].

When there does not exist a controller that is guaranteed to satisfy a
specification under the worst-case behaviors of the environment, i.e. it is un-
realizable, the task of debugging the specification can be difficult and may
be worsened with the existence of a discrete abstraction. For instance, if a
manipulator tasked with fetching parts on a conveyor belt cannot reach for
fast-moving parts, the designer must revise the specification with additional
statements that consider both the physics of the manipulator and the under-
lying assumptions on the uncontrolled environment (in this case, the motion
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of the parts). To assist the designer, automated frameworks have been in-
troduced recently for debugging unrealizable specifications [13,22]. Further
work has shown progress toward automated repair of unrealizable specifica-
tions through the synthesis of revisions to such specifications [9,15,1].

In this paper, we address the problem of realizability of specifications
caused by the dynamics of a system by introducing a framework that au-
tomatically suggests additions to such specifications and provides them to the
user in a clear, understandable manner. We focus our work on systems involv-
ing physical motion, encompassing tasks carried out by mobile robots, land
or air vehicles, or industrial process machinery, to name a few. We adopt an
iterative procedure that uses the discrete abstraction of the physical process to
assist in interactively computing revisions to the specification. Using a graph-
ical visualization tool, the user may accept or deny the revisions at each step.
The goal is to give the user a concise set of revisions to choose from, yet also
ones that are consistent with the original intent of the specification. Any re-
visions that are accepted then become certificates that, if upheld at runtime,
will guarantee the mission success.

As an example, consider a collaborative scenario in which a mobile robot
tasked with fetching parts in a factory setting, illustrated in Fig. 1. In this
scenario, the robot is required to continually visit the supply room and work-
stations, while avoiding any workstations that are occupied. It must be able to
robustly avoid collisions with obstacles and appropriately react to the work-
station as it is occupied or unoccupied. If this specification is applied to a
vehicle with inertia, the robot’s speed and deceleration will become a factor in
synthesizing a controller that fulfills the the task. For instance, once a region
is sensed as being occupied, the task could fail because the vehicle may not
be able to stop by the time it reaches that region, violating the requirement
“avoid any occupied workstations”. To accommodate the effect of inertia, we
could recover if the user is given the environment assumption “A workstation
must not be occupied if the robot is within 1 meter of it,” and it is accepted
for inclusion as an additional assumption in the specification. Notice that, by
giving the user the option to accept such assumptions, he/she is aware that
the robot will succeed if that assumption is met. On the other hand, the robot
may succeed if the assumption is not met, but there are no longer any formal
guarantees for the task.

1.1 Related Work

Several researchers have focused attention to the problem of formal synthesis
of controllers for physical systems. [2,19] have approached this problem from
the standpoint of multi-layered synthesis, where certain parts of the control
strategy are left open for an online planner to complete at runtime. Our ap-
proach is different in the sense that we seek controllers that guarantee the task
under the dynamics at synthesis time, rather than computing a motion plan
at runtime. Similar synthesis approaches (e.g. [18,17]) provide guarantees for
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Fig. 1: Factory resupply example scenario.

nonlinear systems, but assume that the specification is realizable. This work
is complementary in the sense that we strictly deal with the case of unrealiz-
ability due to the dynamics of the physical platform. Our approach, moreover,
provides the user with a rich source of information regarding compatibility
issues with the chosen platform. Specifically, we generate certificates that en-
able a user to consider the environment’s behavior with respect to the mission
and the dynamics of the autonomous system.

Our approach for computing revisions is closely related to recent methods
described in [9,15,1,16]. In [9], a method is devised for determining the cause
of unrealizability for non-reactive tasks and providing specification recommen-
dations to the user. In the reactive setting, [15] present a debugging method for
unrealizable specifications based on templates (LTL formulas) mined from an
environment counterstrategy. A counterstrategy captures the possible behav-
iors for the environment for which there are no safe system moves that allow it
to fulfill its goals. The method in [1] generates specification templates automat-
ically from the counterstrategy, yielding additional safety and liveness environ-
ment statements that remove all execution traces of the counterstrategy. The
work of [16] apply the counterstrategy-based environment assumption mining
technique to an early warning system in human-in-the-loop control systems,
demonstrated in an autonomous driving scenario. By removing the behaviors
present in the counterstrategy, the modified environment is restricted in such
a way as to permit the system to realize its goals under the strengthened as-
sumptions, but can sometimes lead to specifications that no longer match the
user’s intent.

The proposed approach differs from existing works in several ways. The
closest work to ours, [1], adopt a general approach to specification revisions.
Hence, the revisions generated do not hold preference in any one part of a
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counterstrategy over any other part, and to avoid placing unnecessary restric-
tions on either the environment or the behaviors of the system, it is up to
the user to decipher which of the generated revisions are important to keep.
Our approach, in contrast, proposes formulas that considers the discrete ab-
straction to guide the creation of environment assumptions that render the
specification realizable. The rationale is to propose a concise set of revisions
for users to interpret rather than whole counterstrategies. This also aids in
managing a large number of revisions.

Another difference from many existing works (e.g. [15,1]) is that we re-
move the burden for the user to choose templates and subsets of variables for
revising specifications. Our algorithm does both automatically, allowing them
to simply accept or reject the proposed certificates at each step of an iterative
synthesis algorithm. We emphasize how we parse such formulas into state-
ments that are simple to understand, making use of a graphical user interface
where applicable.

Recent attention has focused on refining an existing abstraction as a means
of rendering a specification realizable. For instance, [20] presents an approach
to abstraction refinement in which the authors adopt a counterexample-guided
abstraction procedure to iteratively re-partition the state space of a dynami-
cal system, with the goal of satisfying the specification under the dynamical
system. Another related work, [7], introduces a partitioning scheme that re-
fines a discrete abstraction of a nonlinear system as a means for repairing
unrealizable specifications that are reactive in nature. The main distinction
is that we reason purely about an uncontrollable environment under a given
discrete abstraction, so as to characterize the environment behaviors required
to guarantee the task under this abstraction. To show the benefit of using our
certificates to the task of abstraction refinement with respect to a reactive
task, we adopt the state-space-partitioning abstraction refinement procedure
of [7] as a case study in the robotics domain.

1.2 Outline

The remainder of this paper is outlined as follows. In Section 2, we review
relevant formal definitions and notation. We formally state the problem in
Section 3 and present the approach for generating formulas and user feedback
in Section 4. In Section 5, we present an approach for parsing the revisions as
feedback to the user both as verbal statements and with the help of a graphical
tool. Next, we demonstrate our approach for two case studies that employ two
different types of discrete abstractions for a mobile robot are presented in
Section 6. Lastly, we provide a summary in Section 7.
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2 Preliminaries

2.1 Linear Temporal Logic

Linear temporal logic (LTL) formulas are defined over the set AP of atomic
propositions in the recursive grammar:

ϕ ::= true | π | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2

where π is an atomic proposition in AP . Respectively, ∧ and ¬ are the Boolean
operators “conjunction” and “negation”, and © and U are the temporal op-
erators “next” and “until”. From these operators, the following operators are
derived: “disjunction” ∨, “implication”⇒, “equivalence”⇔, “always” �, and
“eventually” �.

AP consists of a set of environment propositions X describing the state
of sensed environment (e.g. discretized values of a continuous-valued sensor)
and a set of system action propositions Y describing the discrete actions the
system can take. The LTL formulas are evaluated over infinite sequences σ =
σ0σ1σ2 . . . of truth assignments to the propositions in AP . σ is said to satisfy
©ϕ, �ϕ, or �ϕ if ϕ holds true in the next position in the sequence, every
position, or at some future position(s), respectively. We refer the reader to [28]
for a complete definition of the syntax and semantics of LTL formulas.

2.2 Discrete Abstractions

Our model of the behavior of the physical system is a nonlinear differential
equation

ξ̇(t) = f(ξ(t), ν(t)) (1)

given by the function f : Rn × Rm → Rn, where ξ(t) is the continuous state
of the system and ν(t) the command input at time t ∈ R≥0. We impose the
usual regularity assumptions on f that imply the existence and uniqueness of
solutions of (1).

2.2.1 Abstractions of a Dynamical System

Given a bounded configuration space W ⊂ Rn, let R = {R1 . . . Rp} represent
a set of regions (in general, not necessarily disjoint) whose closure covers W,
where the open sets Ri ⊆ W. Wherever disjointness must hold, we will state
so explicitly. The system (1) may be either open-loop, in which case the inputs
ν represent the low-level commands given to the system, or else closed-loop,
in which case ν are regarded as high-level commands such as a target region
that must eventually be reached under the action of some low-level (feedback)
controller that drives the system from one point or region in the state space
to another. We define discrete abstractions for both of these cases.
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We adopt the motion encoding of [23] by introducing a completion propo-
sition Xc ⊆ X , and let Xnc = X\Xc denote those environment propositions
not associated with completion (e.g. sensor propositions). Let πi ∈ Xc denote
a proposition that is True iff the system is in a certain configuration or region.
Let πaj ∈ Y denote a proposition that is True when the system is activating
the jth motion command. We assume that all πaj are mutually exclusive – the
system can only activate one request at a time.

Definition 1 (Discrete Abstraction) We define a discrete abstraction Sa
as the tuple (Qa, Va,Xc,Y, γaX , γaY , δa), where:

– Qa is the set of regions discretizing the system’s configuration space;
– Va is the set of discretized system locomotion commands;
– Xc and Y are, respectively, the configuration and command propositions

(defined above);
– γaX : Qa → 2Xc labels each region with the associated proposition in Xc

that evaluates to True when the system is in the given region(s);
– γaY : Va → Y labels each discrete command with the associated proposition

in Y that evaluates to True when the system is activating the command;
– δa : Qa × Va → 2Qa is a nondeterministic transition relation defining

a region γaX (q′a) ∈ Xc once an action va ∈ Va is taken when in region
γaX (qa) ∈ Xc, where q′a ∈ δa(qa, va).

This abstraction yields an encoding that may be expressed by a set of LTL
formulas [23]. Two possible semantics of the abstraction are explained in the
case studies in Sec. 6.

2.2.2 Abstractions in the Absence of Dynamics

In the absence of dynamics, let the action propositions Y represent the workspace
regions and πi ∈ Y denote a region proposition that evaluates to True when
the system is in Ri ∈ R. We consider a topology model, an undirected con-
nectivity graph describing those workspace regions that are accessible and
adjacent to one another.

Definition 2 (Topology Model) We define a topology model as a formula
ϕtopt over Y that encodes the allowed next regions given the current region, as
follows:

ϕtopt =
∧
πi∈Y

�

πi =⇒
∨

πj∈Y:
cl(Ri)∩cl(Rj)6=∅

©πj

 ,

where cl(·) denotes the closure operation on a set. Note that we also enforce
mutual exclusion of regions such that the physical system is only allowed to
occupy one region at a time.
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2.3 Controller Synthesis

We define a mission specification from which it is required to synthesize a
controller for the system.

Definition 3 (Mission Specifications) The specifications we consider are
LTL formulas of the form:

ϕ := (ϕei ∧ ϕet ∧ ϕeg)︸ ︷︷ ︸
ϕe

=⇒ (ϕsi ∧ ϕst ∧ ϕsg)︸ ︷︷ ︸
ϕs

The formulas ϕαi , ϕαt , and ϕαg are defined over AP , where ϕαi are formulas
for the initial conditions, ϕαt the allowed transitions (safety conditions) to be
satisfied always, ϕαg the goals (liveness conditions) to be satisfied infinitely of-
ten, and α = {e, s} (with e for ‘environment’ and s for ‘system’). The liveness
guarantees take the form

∧
i∈Iα � �(Bαi ), where Iα is the index set of envi-

ronment goals Bei , defined over X ∪ Y ∪ X ′ ∪ Y ′, or system goals Bsi , defined
over X ∪ Y ∪ X ′. X ′ and Y ′ are those propositions in X and Y, respectively,
prepended by the © operator.

Definition 4 (Controller Finite State Machine and Execution) A
high-level controller is defined as a finite-state machine (FSM) A =
(Q,Q0,X ,Y, δ, γX , γY), where Q is the set of controller states, Q0 ⊆ Q is
the set of initial controller states, X and Y are sets of propositions described
above, δ : Q × 2X → Q is a state transition relation providing the next state
q′ ∈ Q given the current state q ∈ Q and the current value of the environment
input z ∈ 2X , i.e. q′ = δ(q, z), γX : Q → 2X is a labelling function mapping
controller states to the set of environment propositions evaluating to True for
all transitions into that state, and γY : Q→ 2Y is a labelling function mapping
controller states to the set of action propositions evaluating to True in that
state.

Consider an infinite execution σ of A, where σ = (γX (q0), γY(q0))(γX (q1),
γY(q1)), . . . for q0 ∈ Q0 and qi ∈ Q, i > 0. At each step i in the execution, we
say that the environment has made a move (occurring first) if there exists an
assignment γX (qi), and that the system has a move (occurring only after the
environment has moved) if there exists an assignment γY(qi). A specification
ϕ written over AP is deemed realizable if there exists a finite-state machine A
such that every execution produced by A satisfies ϕ. That is, at every i ≥ 0,
there exists an assignment of system variables Y for all possible assignments
of the environment variables X such that σ satisfies ϕ. If there exist some
environment behaviors on X for which no such A can be found, then ϕ is
unrealizable.

When combining a mission specification ϕe =⇒ ϕs with the topological
model, we obtain a general formula

ϕ := ϕe =⇒ (ϕs ∧ ϕtopt ),
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written over AP = X ∪ Y.

When combining a mission specification with a discrete abstraction, we
apply the proposition mapping Xnc ← X , Xc ← Y and define Y = {πaj}j ,
where each πaj is a robot motion command. We then obtain a platform-specific
formula

ϕabs := (ϕe ∧ ϕe,at,g ) =⇒ (ϕs ∧ ϕs,at ),

written over Xc ∪ Xnc ∪ Y in which ϕe,at,g consists of environment liveness and
safety formulas and ϕs,at consists of system safety formulas, both over Xc ∪Y,
where the superscript a stands for ‘abstraction’. Note that ϕtopt no longer
appears in ϕabs. Details on this encoding for specific abstractions presented in
Section 6 may be found in [23,5,7].

If ϕabs is realizable, then a finite-state machine A is synthesized by solving
a two-player game played between the environment and the system, using a
GR(1) synthesis algorithm described in [4].

In the case that ϕabs is not realizable, we can synthesize an environment
counterstrategy : a state machine that captures the possible behaviors for the
environment preventing the system from fulfilling its goals.

Definition 5 (Environment Counterstrategies) We define an environ-
ment counterstrategy as a finite-state machine Ac = (Qc, Qc0,X ,Y, δc, γcX , γcY),
where

– Qc is the set of counterstrategy states;
– Qc0 ⊆ Qc is the set of initial counterstrategy states;
– X , Y are sets of propositions in AP ;
– δc : Qc × 2Y → 2Qc is a nondeterministic transition relation returning the

set of counterstrategy states at the next position in the sequence given the
current state and the current valuations of system commands in Y;

– γcY : Qc → 2Y is a labelling function mapping counterstrategy states to the
set of action propositions that are True for all transitions into that state,
and;

– γcX : Qc → 2X is a labelling function mapping counterstrategy states to
the set of environment propositions that are True in that state.

For notational convenience, we define δc(q) = {q′ ∈ Qc|∃ye ∈ Y : q′ ∈
δc(q, ye)} as the projection of δc(·, ·) onto the set Qc, and δc

−1

(q′) = {q ∈ Qc |
q′ ∈ δc(q)} as the inverse transformation relation mapping counterstrategy
states to a set of predecessors.

We now briefly outline how such counterstrategies are synthesized, where
the reader is referred to [13] for technical details. Synthesis involves first per-
forming a fixed point computation on a representation of the specification to
find a Boolean formula of the winning positions for the environment. From
these winning positions, a particular counterstrategy Ac is extracted. Here,
we use the term positions to denote assignments over X ∪ Y ∪ X ′ ∪ Y ′ for
both the environment and system. We may express the environment’s winning
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positions as

WPenv = µV1.
∨
is∈Is

νV2.
∧
ie∈Ie

µV3.
(
¬Bsis ∨ PreV1

)
∧ PreV2 ∧

(
Beie ∨ PreV3

)
,

where µ and ν are, respectively, the least and greatest fixpoint operators, and
where V1 and V3 are initially True, and V2 is initially False before the fixed
point computation begins. PreV is an enforceable predecessor operator that
produces, for a set of positions V, a set of predecessor positions such that, there
exists an environment assignment satisfying the environment safety formulas
ϕet and ϕe,at , for all possible action assignments satisfying the system safety
formulas ϕst and ϕs,at .

3 Problem Formulation

Assume the original mission specification ϕ under the assumption of a topo-
logical model ϕtopt is realizable, where the formulas ϕe and ϕs are, respectively,
environment assumptions and system guarantees defined by the user. Addi-
tionally, we require that ϕe is not falsified by system behaviors satisfying ϕs

(i.e. no trivial behaviors). The goal is to synthesize controllers for such speci-
fications. Given the discrete abstraction and the formulas ϕe and ϕs, we seek
a controller for the platform-specific specification ϕabs.

If ϕ is realizable and ϕabs is unrealizable, then, according to Definition 4,
there exists some environment behavior in Xnc admissible by ϕe such that, if
behaviors in Xc satisfy ϕs,et,g , then no system behaviors satisfy ϕs ∧ ϕs,at .

In the case that ϕabs is unrealizable, the goal of this paper is to generate
a set of revisions (LTL formulas) that, upon conjunction with the platform-
specific formula ϕabs, render it realizable. Specifically:

Problem 1 (Revision Generation and User Feedback) Given ϕ realiz-
able, ϕabs unrealizable, automatically derive a set of formulas for the environ-
ment and the system such that

ϕmod := (ϕe ∧ ϕe,at,g ∧ ψeg ∧ ψet ) =⇒ (ϕs ∧ ϕs,at ∧ ψst ) (2)

is realizable and both ϕe ∧ ϕe,at,g ∧ ψeg ∧ ψet and ϕs ∧ ϕs,at ∧ ψst are satisfiable.
For any such revisions, provide the user with a suggested set of runtime cer-
tificates: a set of human-readable statements consisting of safety assumptions
and guarantees, resp. ψet and ψst , and liveness assumptions ψeg.

To illustrate the problem, consider the following example.

Example 1 Consider again the factory setting of Fig. 1. We begin by writing
the specification in terms of a topology model. Under such a model, the re-
gions of the workspace to be visited are encoded as actions, hence stockroom,
station 1 and station 2 belong to Y, while s1 occupied and s2 occupied (in-
dicating when the respective region is occupied) are sensors belonging to X .
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The robot is required to visit the stockroom and the two workstations (sys-
tem liveness) but avoid visiting those that are occupied (system safety). If the
robot is within a workstation, the environment is required to keep that station
unoccupied (environment safety). Also, the workstations are required to be
infinitely often unoccupied (environment liveness).

The general specification ϕ is composed of the following formulas:

� � stockroom ∧� � station 1 ∧� � station 2 / sys liveness

� �¬s1 occupied ∧� �¬s2 occupied / env liveness

�(© s1 occupied =⇒ ©¬station 1) / sys safety

�(© s2 occupied =⇒ ©¬station 2) / sys safety

�(station 1 =⇒ ©¬s1 occupied) / env safety

�(station 2 =⇒ ©¬s2 occupied) / env safety

True / sys init

True / env init

and the following topology model:

φtopt =� (stockroom =⇒ © factory floor© stockroom)∧
� (station 1 =⇒ © factory floor ∨© station 1)∧
� (station 2 =⇒ © factory floor ∨© station 2)∧
� (factory floor =⇒ © stockroom ∨© station 1∨

© station 2 ∨© factory floor) .

where factory floor corresponds to the unlabeled white space in Figure 1.
The specification ϕ is realizable.

Now suppose we are given a fully-actuated planar robot governed by iner-
tia, described by the system

ẍ = u ÿ = v, (3)

where (u, v) ∈ U are robot commands and (x, y) ∈ R2 are the Cartesian robot
coordinates. We derive an abstraction Sa of these dynamics in the configura-
tion space (x, y, ẋ, ẏ)T ∈ W and obtain the formula ϕabs. With Sa, we want
to synthesize a realizable controller for ϕabs that satisfies the task given an
abstraction of these dynamics.

The specification may be unrealizable for a number of different reasons.
One cause is deadlock, where the environment can force the system into certain
states that have no legal transitions. Suppose that the robot has inertia, which
is encoded in the abstraction as requiring two regions before it is able to
decelerate to a stop. If s1 occupied turns from False to True when the robot
is within two grid cells of station 1, it will be unable to avoid a collision. Note
that, as this behavior stems from the robot’s physics, this behavior occurs in
the platform-specific specification but not in the general specification.
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Another cause of unrealizability is due to livelock, in which the system is
prevented from reaching its goals as a result of an infinite sequence of environ-
ment inputs. For instance, suppose the robot is approaching station 1 and the
environment toggles the value of s1 occupied infinitely often. If the switching
is fast enough, the robot may be able to change its heading, but unable to
move forward toward the workstation. The behavior does not appear in the
general formula because the topology graph always allows the robot to either
remain in place or transit to an adjacent region once the environment has
made a move.

4 Revising Unrealizable Specifications via Counterstrategies

In this section, we formalize our solution strategy for Problem 1. The goal is
to generate revisions that, if possible, repair unrealizable specifications where
the unrealizability is a consequence of a discrete abstraction included in the
specification. We adopt an iterative approach that takes a specification ϕ and
dynamical system f , and interacts with the user at various stages of the pro-
cess, as illustrated in Fig. 2. If successful, the approach outputs a finite state
machine A and the user is exposed to the revisions that have been added to
the specification. At each step, the user may choose to accept the revisions or
else supply their own handwritten revisions. The interactive nature of the algo-
rithm allows the specification designer to choose revisions that are consistent
with his or her intent.

The first step is to create an abstraction of the specification (Abstraction
in Fig. 2), either via a gridding procedure [5] or via the constructive proce-
dure giving rise to partitions based on reachability analysis [6]. In the latter
case, Abstraction contains a call to synthesize a finite-state machine from ϕ,
upon which atomic controllers may be constructed. If the specification ϕabs or
the modified specification ϕmod is unrealizable, various stages of the revisions
approach are invoked as necessary; the complete process is discussed in this
section. The Realizable blocks take as input a specification and returns a con-
troller FSM A if realizable; otherwise, a counterstrategy Ac is returned. Ac
will differ depending on whether it is synthesized from a deadlock-modified
specification or livelock-modified specification. Note that, if the specification
is unrealizable and the counterstrategy is the same between iterations of the
while loop, this means that no revisions have been found that meet the user’s
criteria or do not falsify the specification. In this case, the algorithm terminates
with an unrealizable output.

Note that there are many potential counterstrategies for a given unrealiz-
able specification, with each one being assembled from a game structure [4]
and contain a subset of behaviors of the game structure. When extracting
revisions to the specification, we reason on counterstrategies rather than on
game structures for two reasons. First, game structures have at least as many
behaviors as a counterstrategy, so an approach that extracts revisions on a
game structure will produce at least as many revisions as one applied to a
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Fig. 2: Overview of the procedure for finding runtime certificates and controller
synthesis.

counterstrategy of that game structure. Having fewer revisions in general re-
duces the conservatism and lessens the number of assumptions that are fed to
the user. Second, there are many possible counterstategies for a given game
structure to draw from. Using existing counterstrategy-synthesis tools (e.g. [3,
8]), these can be readily customized to suit a particular designer’s needs. For
instance, a counterstrategy could be extracted that minimizes some objective
function (e.g. minimizes distance to a goal) or that gives preference to certain
states over others (e.g. wide passageways over narrow ones). Thus, our aim is
to introduce an approach that generates a small number of revisions, and may
be customized to a user’s design intent.

We introduce the following example to illustrate the major concepts dis-
cussed in the remainder of this section.

Example 2 Consider the workspace shown in Fig. 3a. Given X = {sen} where
sen is the sensor input and Y = {r1, r2}, we write a specification ϕ requiring
the robot to visit r2 (lower-left gray region) when sen is False, but avoid r2
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when sen is True. Formally:

� � r2 / ϕsg

� �¬sen / ϕeg

�(© sen =⇒ ©¬r2) / ϕst

�(r2 =⇒ ©¬sen) / ϕet

True / ϕsi

True / ϕei

The initial conditions are denoted True to signify that an execution can begin
with any safe initial robot configuration, action, and environment settings.
The controller satisfying this specification is given in Fig. 3b.

We are now given an abstraction, automatically derived using the proce-
dure in [23], in which we have redefined the complete set of environment vari-
ables to be X = Xc ∪ Xnc, where we map the set of environment propositions
in ϕ to the set Xnc (in this case Xnc = {sen}). The set Xc = {x1, . . . , x16} is
an encoding of the set of 2-D robot configurations, and we replace the set of
robot actions Y with the robot’s four cardinal directions of motion. An excerpt
of two of the conjuncts in ϕabs for which the robot’s current position is x7 is
as follows:

� ((x7 ∧W ) =⇒ (©x6 ∨©x7)) ∧� ((x7 ∧ S) =⇒ (©x11 ∨©x7)) / ϕst ,

� � ((x7 ∧W ) =⇒ ©x6) ∧� � ((x7 ∧ S) =⇒ ©x11) / ϕeg.

Additionally, ϕabs includes conjuncts in ϕst and ϕet that encode, respectively,
mutual exclusion of action and completion propositions (no two actions or
completions may occur at the same time). The complete discrete abstraction
Sa appears as arrows in Fig. 3a. A new specification ϕabs is derived, where:

� �(x9 ∨ x13) / ϕsg

� �¬sen / ϕeg

�(© sen =⇒ ©¬(x9 ∨ x13)) / ϕst

�((x9 ∨ x13) =⇒ ©¬sen) / ϕet

True / ϕsi

True / ϕei

4.1 Preventing Deadlock

In preventing deadlock, we introduce a scheme to process a counterstrategy
and extract a set of environment assumptions that remove deadlock behaviors.
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r2

(a)

r1 r2
¬sen

sen ¬sen

(b)

Fig. 3: 2-D example. (a) shows the workspace map and grid whose cells are
labeled with the configuration variable. The white grid cells denote r1, while
the gray denote r2. (b) shows the synthesized controller for ϕ.

Consider a counterstrategy Ac whose deadlock states are collected in Qdead =
{q ∈ Qc | δc(q) = ∅}, and let

Brobot(q) =
∧

π∈γcY(q)∪(Xc∩γcX (q))

π ∧
∧

π∈(Y∪Xc)\(γcY(q)∪γcX (q))

¬π,

Benv(q) =
∧

π∈Xnc∩γcX (q)

π ∧
∧

π∈Xnc\γcX (q)

¬π.

In words, Brobot(q) denotes a Boolean formula for the truth-values of the
command and configuration propositions Y∪Xc at state q and Benv(q) denotes
a Boolean formula for the truth-values of the subset of environment input
propositions Xnc at state q.

4.1.1 Removing Deadlock

As in [1], any pair of states qi, qj ∈ Qc in a counterstrategy satisfying qj ∈
δc
−1

(qi) can be expressed with the formula∨
qj∈δc−1 (qi)

�
(
Brobot(q

j) ∧©Benv(q
i)
)
. (4)

For a particular qi, the formula characterizes the environment’s behavior at
this state in the counterstrategy and the robot’s configuration at the state im-
mediately prior. If there exists an execution that eventually reaches a deadlock
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state qidead ∈ Qdead, we may use this statement to remove the environment be-
haviors in the counterstrategy causing deadlock. The negation of (4) leads to
the following formula, which is suggested as an additional assumption:∧

qj∈δc−1 (qidead)

�
(
Brobot(q

j) =⇒ ©¬Benv(qidead)
)
. (5)

Before conjuncting each computed formula with ψet , a check is made to deter-
mine if it falsifies the left-hand side of ϕmod, i.e. if (5) is assigned to ϕe,at , then
ϕe∧ϕe,at ∧ψet =False. If this is the case, the formula is discarded and it is not
included as a conjunct in ψet . The deadlock state index i is then incremented
and the process repeats with a new suggested assumption.

4.1.2 Preventing Unintended Behaviors

When the environment assumptions of (5) are added to the specification, the
system may exhibit behaviors that are noticeably different from the system’s
behaviors from the original specification synthesized under a topology graph.
For instance, consider Example 2. Under the original (realizable) specification
ϕ, if the robot is in the white region in Fig. 3a and the door is closed, the FSM
of Fig. 3b reveals that the system remains within the white region until the
door opens. Now consider the platform-specific specification ϕabs abstracted
under the shown workspace decomposition. After applying assumptions to
prevent the door from closing when the system is in cell x5 (where the system
is unable to avoid entering r2 in the next step), the system will not avoid
moving toward the door when within the white region and the door is closed,
clearly different behavior than that in Fig. 3b.

To reconcile these differences, our approach forces the system to react
conservatively to the newly-added environment revision by treating the state
qj ∈ δc−1

(qidead) (in the antecedent of (5)) as if it were a deadlock state. Thus,
when the physical system is at a configuration previous to the deadlocked
configuration and when the added assumptions on the environment prevent
it from behaving in a certain way in the next state, it will be forbidden from
entering the configuration prior to deadlock when these conditions hold in the
current state. In other words, such conditions will prevent the system from
approaching the door when it is closed. On the other hand, when the door is
open, ψet prevents it from closing again once the system has made its move.

Formally, we disallow the behavior∨
qj∈δc−1 (qidead)

�(©Benv(q
i
dead) ∧©Brobot(q

j))

by introducing an additional revision ψst :∧
qj∈δc−1 (qidead)

�
(
©Benv(q

i
dead) =⇒ ©¬Brobot(qj)

)
. (6)
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Such a revision places a safety restriction on the system, preventing it from
entering a neighboring state to a deadlock state whenever the environment
is set to the same value for which deadlock occurs. Doing this produces a
specification that makes the system’s behavior conservative; we are limiting the
conditions under which the system may enter a neighboring state, when in fact
the system is not in any true danger of violating the original safety guarantees
in ϕ until it reaches r2. Nonetheless, if the specification is realizable, the system
will be able to react to the environment as long as the actions/configurations
are not included in those specified in

∧
qj∈δc−1 (qidead)

Brobot(q
j).

4.1.3 Aggregated Deadlock Removal via Backward Reachability

If the modified formula is determined to be unrealizable and new deadlock
states are found at a state qj ∈ δc−1

(qidead), then we once again return to the
original set of circumstances specified in Problem 1. We repeat the process in
this section for as many times as required to eliminate deadlock states or until
the resulting specification is unrealizable. This, however, has the drawback
that synthesis of a counterstrategy may have to be repeated several times. We
adopt a more direct approach that reduces the number of computations, and
has the added benefit of producing user-generated statements that are simple
to interpret (see Sec. 5).

To avoid repeated synthesis of counterstrategies, we apply the assumption
and guarantee revisions explained above to entire subtraces of a single coun-
terstrategy (a finite word of an execution trace for the counterstrategy). To
do this, we identify states for which there is no safe command to be taken
such that there exists a subtrace that eventually visits states in Qc\Qdead.
The search for deadlock revisions then reduces to a graph search on the coun-
terstrategy, as summarized in Algorithm 1. The algorithm builds up a set of
deadlock-committed states Qcommit by querying the abstraction and adding,
via a breadth-first search (BFS in line 4), predecessor counterstrategy states
from deadlock Qdead for which all system commands lead to states in Qcommit.
As such, the procedure BFS amounts to a backward reachability operation.

For generating revisions and providing user feedback, we also maintain a
mapping Qreach : Qcommit → 2Qdead of deadlock states reachable from each
q ∈ Qcommit obtained from the abstraction Sa. The search continues until a
fixed point of states is reached where no additional deadlock-committed states
can be found, at which point BFS returns a tuple containing Qcommit and
Qreach. The precise condition under which the search terminates is when a
q ∈ Qc is found such that:

∃q′ ∈ δc(q) : q′ /∈ Qcommit.

Here, Qcommit plays the role of Qdead. We therefore replace Qdead in the safety
revisions (5) and (6) with Qcommit. To be precise, we replace (5) and (6) with,
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respectively:

∧
qj∈Qicommit

�

Brobot(qj) =⇒
∧

qk∈Qreach(qicommit)

©¬Benv(qk)

 (7)

∧
qj∈Qicommit

�

 ∧
qk∈Qreach(qicommit)

(
©Benv(q

k) =⇒ ©¬Brobot(qj)
) , (8)

for each qicommit ∈ Qcommit.
Algorithm 2 contains a procedure for finding revisions that target dead-

locks. The first step in the algorithm is to compute environment and system
transition subformulas ψet and ψst (using the approach described in Sec. 4.1.3)
that prevent transitions to states in the counterstrategy from which the system
has no safe transitions (deadlock). If these revisions falsify the environment
and system, they are removed. The second step is to provide feedback to the
user. Depending on the user’s response, the revisions are either applied or dis-
carded. If accepted, they become runtime certificates, as discussed in Sec. 5.

Algorithm 1 Computing deadlock-committed states.

procedure commitStates(Qdead)
Initialize Qnew, Qcommit to Qdead.
while Qnew 6= ∅ do

Qnew ← BFS(Ac, Qcommit)
5: Qcommit ← Qcommit ∪Qnew

for q ∈ Qnew do
Qreach(q)← δc(q) . Create a graph of reachable states

end for
end while

10: return Qcommit, Qreach

end procedure

The following proposition is immediate considering the fact that Algo-
rithm 1 traverses a particular counterstrategy Ac via backward reachability
using the transition system Sa.

Proposition 1 Algorithm 1 is sound and complete with respect to Sa.

Soundness with respect to Sa implies that Qreach does not contain states for
which there exists no sequence of actions that may eventually lead to Qdead.
Completeness with respect to Sa implies that, from each state in Qreach, there
exists a sequence of actions that may eventually reach Qdead and Algorithm 1
will always terminate with such a Qreach, if it exists.

Example 3 Returning to Example 2, suppose we obtain a counterstrategy con-
taining the states q0, . . . , q3, as pictured in Fig. 4a and Fig. 4b, starting in cell
x7 with sen =False. One of the possible executions in this counterstrategy
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Algorithm 2 Synthesizing deadlock revisions for an realizable specification
ϕabs.

procedure synthDeadlockRevisions(ϕabs,Ac,R)
. Eliminate deadlocks

Qcommit ← commitStates(Ac)
for all qicommit ∈ Qcommit do

5: ψe
t,cand, ψ

e
t ← Eq. (7)

ψs
t,cand, ψ

s
t ← Eq. (8)

if ¬(ϕe ∧ ϕe,a
t,g ∧ ψe

g ∧ ψe
t ∧ ψe

t,cand) or ¬(ϕs ∧ ϕs,a
t ∧ ψs

t ∧ ψs
t,cand) then

ψe
t ← ψe

t \ψe
t,cand

ψs
t ← ψs

t \ψs
t,cand

10: end if
end for

. User feedback
for all Ri ∈ R do

(q?i , q
?
dead)← Eq. (22)

15: disti ← |γcX (q?)− γcX (q?dead)|
print (Ri, disti, Benv(q?dead,i))

end for
if user accepts any ψe

t , ψs
t then

ϕmod ← Eq. (2)
20: (realiz,Am

c ,WPenv)← ctrStrategy(ϕmod)
end if
return realiz,Ac,WPenv ,ϕmod

end procedure

eventually leads the robot to cell x5 with the sensor sen =True as shown in
Fig. 4b. In this execution, the sensor sen remains False until the robot enters
x5, at which point a transition in ϕst is violated. Hence q3 is a deadlock state.
The formula �(© sen∧¬x6∧W )1 (in words, “eventually, the system will be
in cell 6 and activating go West, with sen True in the following time step”) is
extracted by evaluating �(Brobot(q2) ∧©Benv(q3)). The complement of this
formula, �((¬x6 ∧W ) =⇒ ©¬sen), is added as an additional environment
assumption. This assumption negates the behaviors in the counterstrategy for
that particular deadlock state. Being that there is only one deadlock state,
we add no further assumptions. Upon adding this revision to the environment
assumptions, we determine that the modified specification is realizable.

Notice that the controller synthesized based on the specification above
produces executions that satisfy the specification but the system now assumes
that the environment will always turn sen False whenever it reaches x5. In the
example, consider the behavior when the robot starts at x7 with sen True. The
execution of the robot in this case is as shown in Fig. 4c. In this execution, sen
remains True and, as the robot moves toward r2, the environment eventually
must set sen to False to be consistent with the added assumption. When
outside of x5, the robot follows the same sequence of moves regardless of the
environment. Note that the controller for the original, realizable specification

1 We only make the True action explicit (W in this case), since mutual exclusion disallows
the other actions from being activated at the same time.
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ϕ (Fig. 3b) does not exhibit this behavior because there is no imposition on
how the environment must behave based on the robot’s configuration. In that
case, if sen is True, the robot waits in r1 until sen becomes False.

We compute a set of four deadlock-commit states Qcommit = {q′1, q′2, q′3, q′4}
corresponding to the cells {x5, x1, x2, x6}. We obtain the following ψet formu-
las:

�((x5 ∧ S) =⇒ ©¬sen) (9)

�((x1 ∧ S) =⇒ ©¬sen) (10)

�((x2 ∧W ) =⇒ ©¬sen) (11)

�((x6 ∧N) =⇒ ©¬sen), (12)

and the following ψst formulas:

�(© sen =⇒ ©¬(x5 ∧ S)) (13)

�(© sen =⇒ ©¬(x1 ∧ S)) (14)

�(© sen =⇒ ©¬(x2 ∧W )) (15)

�(© sen =⇒ ©¬(x6 ∧N)). (16)

With these revisions added to ψet and ψst (highlighted orange in Fig. 5, the
modified specification eliminates the deadlock states present in the original
counterstrategy. Observe that (9) alone will eliminate deadlock at cell x5;
however, (9) coupled with the system safety formulas (13) will introduce an-
other deadlock at x1 and x6, and so on. Hence, (9) – (16) are necessary
when both environment and system safety formulas (7) and (8) are added at
each state in Qcommit. Additionally, note that none of the revisions falsify the
environment.

Upon synthesis, we find that a counterstrategy synthesized from this mod-
ified specification does not contain deadlock states. In the next section, we
discuss an approach to render the specification realizable through an elimina-
tion of livelock behaviors.

4.2 Preventing Livelock

The environment may be able to win the two-player game through livelock:
moves for the environment that force the system to cycle indefinitely through
a sequence of states, keeping the system away from one of its goals. Consider
the behavior of the system when the above ψet and ψst formulas (9)–(16) are in-
troduced as revisions. Starting at x16, the behavior shown in Fig. 5 is possible.
In this execution (shown in Fig. 5), the system eventually cycles indefinitely
between six cells in the workspace. Whenever the robot visits the cell x7, the
environment activates sen, forcing the robot to move S to avoid violating the
safety guarantee revision in (16). The environment is then able to satisfy its
liveness goal (� �(¬sen)), while preventing the system from achieving its goal
of reaching r2.
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q0
¬sen, x7

q1
¬sen, x6

q2
¬sen, x5

q3
sen, {}

S

W W {}

(a)

(b)

sen False

sen True

sen True or False

(c)

Fig. 4: (a) shows a partial counterstrategy for Example 3 leading to dead-
lock. (b) shows a corresponding robot trajectory leading to deadlock. The
cells shaded yellow indicate configurations in which there are no sequence of
commands that avoid reaching r2 eventually. (c) shows the result of a synthe-
sized controller where deadlock is removed, but where the strategy expects the
environment to set sen to False once the robot enters cell x5. The numbering
of the cells correspond to the state labels, omitting the “x”.

Once we obtain a counterstrategy free of deadlock states, our approach
generates environment assumptions that remove the counterstrategy execu-
tions that exhibit livelock. The idea is to selectively identifies states in the
counterstrategy for which the system still has winning actions to take. Our
approach then exploits states with this property to prevent the environment
from always making such assignments at these counterstrategy states. We do
so by applying liveness assumptions that remove the environment’s ability
to remain in these states forever. Hence, there exists some finite time in the
execution where the system is allowed to take these actions.

Take any q ∈ Qc. Let Vnc : Qc → 2Xnc be a function mapping counter-
strategy states to the set of all non-completion environment proposition as-
signments at the current step in the execution that satisfy the environment’s
safety formula ϕet , with respect to the proposition assignments at the previous
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Fig. 5: Map showing configurations for which the revisions ψet and ψst from Ex-
ample 3 apply; a counterstrategy execution trace, as explained in Section 4.2.
The green part of the path denotes where sen =False and the red denotes
where sen =True.

step γcX (q) ∪ γcY(q). Now, let

B′nc(q) =
∨

v∈Vnc(q)

∧
π∈v
©π ∧

∧
π∈Xnc\v

¬©π

 ,

be the Boolean representation of Vnc(q) at the next execution step.
Our goal is to find, for each q ∈ Qc, a subset Qcut ⊆ Qc for which the

result

B′nc(q) ∧Benv(q) ∧Brobot(q) ∧ ¬WPenv|X ′c,Y′ 6= False (17)

is obtained, where WPenv is the set of winning positions for the environment
and where (·)|Xc,Y denotes the existential abstraction with respect to proposi-
tions in X ′c and Y ′. Consequently, for any q ∈ Qcut there is valid environment
input assignment at the time step after visiting state q that is not winning
for the environment. One can think of Qcut as being those counterstrategy
states where it is possible that the environment has been able to “cut away”
a command that will allow the system to proceed to its next goal by applying
some environment input. Moreover, for all such environment inputs that are
losing for the environment, there exists a valid command the system may take
that is winning for the system.

Using Qcut, we formulate a set of liveness assumptions that restrict the
environment from always behaving in a manner that prevents the system’s
progress toward its goals. Notice that Qcut contains all states for which there
is an environment and system move not in the environment’s strategy; however,
not all such moves are necessarily winning for the system player. For instance,
a state in Qcut could yield an environment input that does not allow the
environment player to move strictly closer to its goal yet only allow system
moves that place the system further away from its goal.
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We therefore form a set Pcut ⊆ Qcut for which the system has safe com-
mands that are winning for the system. We use Qcommit (from the deadlock
counterstrategy) to define the set of states where there exist system moves
that lead the system closer to its goals. We populate Pcut as follows:

Pcut = {q ∈ Qcut | ∃va ∈ Va,∃q′ ∈ Qcommit,
∃qa ∈ δa(γcX (q), va) :

∀π ∈ Xc, π ∈ γaX (qa) iff π ∈ γcX (q′)}. (18)

We then apply the environment liveness assumption

� �
∨

qi∈Pcut

Brobot(qi) ∧ ∧
qj∈δc(qi,γcX (qi))

©¬Benv(qj)

 . (19)

This liveness formula disallows the environment from denying the system from
taking action that lead it closer to its goals, when the system is in a config-
uration where there is such an action to be taken. Because we are targeting
a set of states Pcut rather than an entire counterstrategy, the conditions (19)
are less restrictive than those in [1]. In that case, let SCCc be the set of states
belonging to a strongly-connected component (SCC) in Ac determined using
Tarjan’s depth-first search algorithm [26]. Then, the revisions are as follows:

� �
∨

qi∈SCCc

Brobot(qi) ∧ ∧
qj∈δc(qi,γcX (qi))

©¬Benv(qj)

 . (20)

Nonetheless, that approach is adopted as a fallback if the addition of (19) fails
to render the specification realizable or if Qcommit is empty.

Algorithm 3 uses the counterstrategy from Algorithm 2 to generate liveness
assumptions ψeg restricting transitions to cycles of states preventing the system
from fulfilling its goals (livelock). Once a candidate liveness assumption is
computed, it is checked in Lines 12–19 to ensure that the system’s strategy
does not contain a sequence of moves that cause the new liveness condition to
be falsified. In such cases, realizable returns False, and the candidate liveness
is removed. The user may elect to accept or discard this formula; if accepted,
it is added to the set of runtime certificates.

Example 4 With the specification ϕabs in Example 2 along with the deadlock
revision (9)–(16), a new counterstrategy is extracted as pictured in Fig. 7 that
is free of deadlock. The set of winning states for the environment, shaded
orange in Fig. 6a, includes assignments for the environment variable sen, also
visualized in the figure. From this, we may observe that there are four states,
q3, q5, q6, q8 in Fig. 7 for which there is an alternative assignment to sen,
namely sen =False, that does not satisfy (17). In each of the other states
in the counterstrategy, sen =False could be replaced with the alternative
assignment sen =True, yet the result will remain in the environment’s winning
set. Hence, Qcut = {q3, q5, q6, q8}.
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Algorithm 3 Synthesizing livelock revisions for an realizable specification
ϕmod.

procedure synthLivelockRevisions(ϕmod,Ac,WPenv ,R,Qcommit)
. Eliminate livelocks

if Qcommit 6= ∅ then
Qcut ← {q ∈ Qc | B′

nc(q) ∧Benv(q) ∧Brobot(q) ∧ ¬WPenv |X ′c,Y′ 6= False}
5: Pcut ← Eq. (18)

ψe
g,cand, ψ

e
g ← Eq. (19)

else
ψe
g,cand, ψ

e
g ← Eq. (20)

end if
10: if ¬(ϕe ∧ ϕe,a

t,g ∧ ψe
g ∧ ψe

t ∧ ψe
g,cand) then

ψe
g ← ψe

g\ψe
g,cand

else
ϕtry ← Eq. (2)
realiz ← realizable(ϕtry)

15: if ¬realiz then
ψe
g ← ψe

g\ψe
g,cand

. System falsifies environment liveness
end if

end if
20: . User feedback

for all Ri ∈ R do
if then

print Liveness revisions found for region Ri.
end if

25: end for
if user accepts livelock revisions then

ϕmod′ ← Eq. (2)

(realiz′,A′
c,WP

′
env)← ctrStrategy(ϕmod′)

end if
30: return realiz′,A′

c,WP ′
env ,ϕmod′

end procedure

Of these states, q3, q6, q8 are those in which the robot’s abstraction has
an action (move W ) driving the system into configurations matching states
within the set Qcommit computed in Example 3. The intersection of Qcut
and {q3, q6, q8} are collected in Pcut, corresponding to regions shaded blue
in Fig. 6b. Note that this leaves out {q5} (shaded yellow) for which there is an
environment move keeping it from immediately realizing an environment goal
(� �(¬sen)) but does not lead the system closer to its goal of reaching r2.

With Pcut, we apply environment liveness revisions ψeg:

� �((x7 ∧W ∧©¬sen) ∨ (x3 ∧W ∧©¬sen)

∨(x7 ∧ S ∧©¬sen)) . (21)

Adding this final revision produces a specification ϕmod that is realizable.

Proposition 2 The alternating application of the approaches in Algorithms 2
and 3 in the context of the flow diagram of Fig. 2 terminates with either a
realizable specification or failure.
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r2
{sen,¬sen}

{sen}

{sen,¬sen}

{sen,¬sen}

{sen}

{sen}

{sen,¬sen}

{sen,¬sen}

{sen,¬sen}

{sen,¬sen}

{sen,¬sen}

{sen,¬sen}

(a) (b)

Fig. 6: (a) Partial visualization of the set of winning positions WPenv, showing
all assignments to the environment proposition sen that are in the set WPenv
in the next step in the execution given the system is currently occupying
positions in the red-shaded cells and activating the indicated actions. (b) Map
showing regions associated with cut states from Example 4.
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Fig. 7: Deadlock-free counterstrategy for Example 4.

Proof Unrealizability of ϕabs with ϕ realizable implies an inconsistency be-
tween the task and the abstraction Sa. The special structure of the problem
gives rise to specific selection of the propositions Xc ∪ Y for Brobot and Xnc
for Benv. Addition of a safety formula (6) or a liveness formula (19) restricts
the behavior of Xnc without altering the transitions of Sa. Since the user may
preempt the revision process at any step in the algorithm, we assume without
loss of generality that the revisions are always accepted.
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We prove soundness by showing that, whenever the revisions ψeg and ψet
are found at any iteration m > 0, then either Amc 6= Am−1c or the revisions
falsify the antecedant of ϕmod,m−1, the modified specification ϕmod at step
m−1. The counterstrategy Am−1c produces executions σc that are either finite
(end in deadlock) or infinite (enter an SCC). If Am−1c contains deadlock states,
then (4) will encode a transition for one such σc. If ψet of (5) does not falsify
the antecedant of ϕmod,m−1, then this σc will not be an execution accepted by
Amc . If Am−1c contains no deadlock states, it must contain an SCC [1] with an
execution σc accepted by Am−1c . Thus, either formula (19) or (20) will produce
a ψeg that, if it does not falsify ϕmod,m−1, then at least one execution trace σc
will not be accepted by Amc .

Further iterations of the main loop in Algorithms 2 and 3 that uncover
new revisions only adds to the executions σc removed and, by application of
the induction hypothesis, this results in termination either by recovering a
realizable specification, or Amc = Am−1c (failure).

Note that the existence of a deadlock or livelock revision is predicated on
the reachability of the system goals ϕsg.

5 Creation of Runtime Certificates

Our feedback to the user represents a certificate that, if upheld, will guarantee
the mission under the dynamics. We build this certificate around three types
of statements: a command given to express the added environment safety revi-
sions, a consequence used to describe the outcome of the system safety revisions
the system’s behaviors, and a cause for the revisions stemming from the dis-
crete abstraction. We combine the statements automatically into a template
of the form

Because [Cause], then [Command]. If these conditions are upheld,
[Consequence].

Given this information, the user may choose to accept either the command
or consequence statements depending on their consistency with the original
design intent. We describe the process for translating the abstraction and
revisions into such statements. We also provide a graphical tool that aids this
process by allowing the user to interact with a map of the workspace.

5.1 Parsing the Revisions

By exploiting the iterative aggregation procedure in Section 4.1, we group
statements in terms of commit states resulting in certificates that are simpler
to parse than would be the case if separate statements were to be given for each
region of the configuration space. For each labeled workspace region Ri ∈ R,
we mark those deadlock states (if any exist) from whose predecessors there
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exists a command va ∈ Va (Definition 1) to reachRi. Those marked as deadlock
states are collected in the set Pdead(Ri), defined formally as:

Pdead(Ri) = {q ∈ Qdead | ∀q′ ∈ δc
−1

(q),∃va ∈ Va,
∃q′a ∈ δa(γcX (q′), va) : ∀π ∈ Xc,

π ∈ γaX (q′a) iff π ∈ γa(Ri)}.

In addition to giving the user a graphical representation for the set of the
configuration space over which the revisions have been generated (discussed in
Sec. 5.2), we verbally provide the user with a conservative metric for this set.
In the fixed point computation in Algorithm 1, we keep track of each deadlock
state reachable from each state added to Qcommit. We use this stored informa-
tion to find the distances associated with the regions for each state stored in
Qcommit, and provide the user with a simple numerical metric overapproximat-
ing the conditions under which the environment would be required to adhere
for the generated revisions to be satisfied. Specifically, this overapproximation
is a radius of an enclosing circle projected onto the Cartesian subspace.

Given counterstrategy state q ∈ Qc, let JγcX (q)K denote the projection of
the region Ri for which πi = γcX (q) onto R3∩W. For each Ri corresponding to
a configuration for the system that satisfies some deadlock state in Qdead, we
find the relative proximity to a deadlock condition (in terms of physical coor-
dinates) by finding the maximal pairwise distance between any states affected
by the deadlock revisions:

(q?i , q
?
dead,i) = arg max

q∈Qcommit,
q′∈Qreach(q)∩Pdead(Ri)

∣∣∣JγcX (q)K− JγcX (δc
−1

(q′))K
∣∣∣ . (22)

Here, |vx′ | is the Euclidean norm of the real-valued abstraction state qa ∈ Qa
represented by a set of propositions vx′ ⊆ Xc that are True in that state.
The pair of counterstrategy states q?i and q?dead,i are those corresponding to a
revision for region Ri where the distance is greatest, under the constraint that
q?dead,i is a deadlock state that is reachable from q?i ∈ Qcommit. Note that the
distance between the configurations of the two states is:

disti =
∣∣∣JγcX (q?i )K− JγcX (δc

−1

(q?dead,i))K
∣∣∣ .

5.1.1 Translating Environment Assumptions into Command Statements

Our goal is to provide users with statements such as “Keep sensor sen False

if the robot enters to within N meters of r2”. We correlate each unique re-
gion Ri to the environment proposition assignments prevented by the safety
assumption revisions ψet . Those prevented assignments are given in the for-
mula ψ2(q?dead,i). That is, the added environment assumptions prevent the
environment from triggering the combination ψ2(q?dead,i). The data provided
to the user is represented by the triple (Ri, disti, ψ2(q?dead,i)). The triple can
be displayed to the user as follows: “If the robot is within disti of region Ri,
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then the generated deadlock revisions (for a given counterstrategy) will be
satisfied if the environment is not set to ψ2(q?dead,i).” Note that this metric
supplies a sufficient but not necessary condition for satisfying the revisions.
That is, there might be executions where the system enters within disti with
any environment setting yet still be able to satisfy the revision formulas.

5.1.2 Translating System Guarantees into Consequence Statements

In a similar manner to our formation of command statements, we generate con-
sequential statements based on the set of states that are backward-reachable
from deadlock states. Such statements are used to convey the added guaran-
tees that are required to recover behavior that is close to that of the topology
graph. The triple (Ri, disti, ψ2(q?dead,i)) yields the statement “If the environ-
ment does not set ψ2(q?dead,i), then the robot will not move to within disti of
region Ri.” The user can elect to accept or discard these statements (hence
controlling whether or not ψst is inserted into (2)), providing a more refined
level of control over the behavior of the system in the presence of the added
environment assumptions.

5.1.3 Translating the Abstraction into Causal Statements

Statements are also provided to the user in order to convey to the user the
root cause of the added environment assumptions. These are generated as a
consequence of the reachability analysis described in Sec. 4.1. Specifically, the
pair (Ri, disti) produces the statement “If the robot is within disti of region
Ri, then it cannot avoid ultimately entering Ri.”.

The following example illustrates the procedure.

Example 5 In the result of Example 3, let qdead be the deadlock state computed
by the counterstrategy corresponding to the configuration x9, and designate
Qcommit = {q1, q2, q3, q4} as the set of commit states for this deadlock. For
workspace region r2, Pdead(r2) = qdead, and Qreach(qi) = qdead for i = 1, . . . , 4.
We next determine the pair (q?2 , q

?
dead,2) to be

(q?2 , q
?
dead,2) = arg max

{∣∣∣∣(0
1

)
−
(

0
2

)∣∣∣∣ , ∣∣∣∣(0
0

)
−
(

0
2

)∣∣∣∣ ,∣∣∣∣(1
0

)
−
(

0
2

)∣∣∣∣ , ∣∣∣∣(1
1

)
−
(

0
2

)∣∣∣∣} = (q2, qdead),

where the subscript 2 in the ? variables is used to signify the fact that the
variables apply to region r2. Assuming η = 1m, the corresponding distance is
dist2 =

√
12 + 22 = 2.2m. Finally, reflective of the revisions in (9)–(16), we

note the subformula ψ2(q?dead,2) = sen.
Therefore, the generated causal statement is: “the robot cannot avoid en-

tering r2 if it enters to within 2.2m of it”. LTL formulas in (9)–(12) are sum-
marized as: “if the robot enters to within 2.2m of r2, the environment must
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not set the variable sen to True”. Likewise, the LTL formulas in (13)–(16) are
summarized as: “if the environment sets sen to True, the robot will not enter
to within 2.2m of r2”.

5.2 Graphical Visualization Tool

We aid the user in eliciting the runtime certificates generated above via a
graphical user interface (GUI), pictured in Fig. 8, which runs as an extension
to the LTLMoP toolkit2. The tool allows a user to make queries on different re-
gions and actions with the aid of a map to discover any runtime certificates that
have been generated. The generated statements will change depending upon
the user’s decision to accept or reject the revisions. In the example shown, the
region denoted E dropoff L indicates an overapproximation and projection of
the deadlock-committed states, which has been computed by analysis (e.g. [7]).

In the query example shown in Fig. 8, the user has selected the region
E dropoff L to query the case where the robot is currently in E dropoff L. The
user has next selected dropoff L to indicate that moving to dropoff L is the
commanded action the robot is taking. The certificates for this query is pro-
vided in the GUI text box. The GUI aids a user when there are numerous
certificates to consider, or when the workspace has been re-partitioned as a
consequence of reachability analysis. We examine such a use case in further
detail in Sec. 6.

6 Case Studies

In this section, we demonstrate the revisions approach in two example sce-
narios. The examples serve to demonstrate the effectiveness of our approach
when the designer is faced with different specifications and different types of
discrete abstractions representing the physics of a mobile robot.

6.1 Abstractions

We begin by defining two special cases of abstraction that fit in the general
definition of Definition 1.

6.1.1 Temporally-Grounded Abstractions

The discrete abstraction in a temporal paradigm. By adopting the approach
in [24,21,32], we may discretize the bounded configuration spaceW ⊂ Rn and
the bounded space of command inputs U ⊂ Rm, then define q′a ∈ δa(qa, va) to
be the set of configurations γaX (q′a) that are reached after some elapsed time
τ . Specifically, we denote [W]η and [U ]µ to be, respectively, the uniform grid

2 https://github.com/VerifiableRobotics/LTLMoP/
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Clicked re-
gions

LTL formulas

Runtime cer-
tificates

Fig. 8: A screen capture of the certificate visualization tool. The user speci-
fies the current region and action by clicking regions in the workspace map
(highlighted orange). Based on this input, the LTL formulas representing the
revision matching that selection are displayed in the info box, along with a cer-
tificate of the revisions, provided as text-based feedback. Any sensors that are
disallowed as per the command statement are painted red in the upper-right
list.

on W discretized with resolution η and U discretized with resolution µ. This
grid is defined as follows:

[W]η:= {x ∈ W | ∃k ∈ Zn : x = kη}, (23)

[U ]µ := {u ∈ U | ∃k ∈ Zm : u = kµ}. (24)

Note that, in Definition 1, Qa = [W]η, Va = [U ]µ. Also, rather than δa being
defined as the region under which motion completes, it is defined to complete
after some time interval τ . The reader is referred to [5] for full details on the
approach to constructing such an abstraction.
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6.1.2 Abstractions Grounded on Activation/Completion of Motion

In this case, the transition relation δa is defined to be the possible regions
γaX (q′a) that may be reached under action va ∈ Va from region γaX (qa). For
a particular transition under δa to be defined, the underlying system must
guarantee that, under action va, the system eventually reaches the set γaX (q′a),
q′a ∈ δa(qa, va), from any continuous state ξ ∈ γaX (qa) and remains within the
union of γaX (q′a) and γaX (qa). Alternatively, a subset of γaX (qa) may be taken as
long as a controller composition property holds (see [7] and references therein
for details).

6.2 Revisions in a Finely-Partitioned, Temporal Abstraction

In this case study, we return to the factory scenario in Example 1 using the
workspace in Fig. 1. To carry out this task, we select a robot described by a
unicycle model that is governed by the kinematic relationship:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω,

where the x and y are the Cartesian displacements in meters, θ is the orien-
tation angle, and v and ω are, respectively, the forward and angular velocity
inputs to the system. The car model is subjected to the constraint where it may
only move with positive forward velocity (it cannot stop). An abstraction is
generated for the three-dimensional configuration space and two-dimensional
input space consisting of 2.2 × 106 states, with the chosen values η = 0.15,
µ = 0.2, τ = 0.35.

We generate a temporally-grounded abstraction, as described in Sec. 6.1.1,
using the Pessoa Toolbox.3 For synthesis, we use the Slugs Synthesis Tool,
part of the LTLMoP Toolkit;4.

The general specification is realizable, producing the controller pictured in
Fig. 9; however the specification ϕabs (with respect to the unicycle model) is
unrealizable. With the approach in Algorithms 2 and 3, we compose revisions
that render ϕmod realizable. After a counterstrategy is synthesized, revisions
are found for a total of 2040 states in the counterstrategy (taking 1020 seconds
to synthesize on a laptop PC with a dual-core processor and 8GB memory).
A metric for these revisions is generated and the user is prompted with the
following:

Deadlock revisions found.

When within 1.32 m of station 1, never set environment variable s1 occupied to

True.

Accept? (y/n)

If the environment variable s1 occupied is set to True, then the robot will

never enter to within 1.32 m of station 1.

Accept? (y/n)

3 https://sites.google.com/a/cyphylab.ee.ucla.edu/pessoa/
4 https://github.com/VerifiableRobotics/slugs
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Note that, as our configuration space consists of variables of mixed units, the
norm computed in (22) has been projected onto the Cartesian plane. Recall
that accepting the first statement (environment behaviors) removes deadlocks
associated with entry into station 1, while accepting the revisions to the second
statement does not alter the realizability of the resulting specification, but
instead produces different system behaviors in proximity to station 1.

A second prompt is given:

When within 1.44 meters of station 2, never set environment variable s2 occupied
to True.

Accept? (y/n)

If the environment variable s2 occupied is set to True, then the robot will

never enter to within 1.44 m of station 2.

Accept? (y/n)

At this point, should the user accept both revisions, a new counterstrategy is
synthesized containing no deadlock states. The user is prompted again:

Livelock revisions found. When within 1.35 meters of station 1, always eventually

set environment variable s1 occupied to False.

Accept? (y/n)

Livelock revisions found. When within 1.46 meters of station 2, always eventually

set environment variable s2 occupied to False.

Accept? (y/n)

Note that the revisions are associated with a set of counterstrategy states in
Pcut. The locative commands are computed in a similar manner to the deadlock
revisions by replacing the states within Pcut in place of Qcommit.

This time, the specification is realizable if the user accepts this revision. The
resulting execution for the controller is as shown in Fig. 10. The trajectories
pictured in the figure represent evolutions of the continuous nonlinear system
when commanded by the synthesized controller. Forward integration is applied
to solve the equations of motion using an integration step size of 0.001 sec.
Note that the system in the figure infinitely often visits the three regions
and is able to react to a change in the environment. In Fig. 10a, the system
avoids the region station 1 whenever s1 occupied turns True, this happens at
distances greater than 1.32 m of station 1. A similar result is seen in Fig. 10b.
These behaviors are consistent with the intended behaviors encoded by the
specification in Example 1.

6.3 Workspace Re-Partitioning in the Activation/Completion Paradigm

In this case study, we examine the use of our approach to fulfill a specifi-
cation where the robot is tasked with moving packages from a pick-up area
to one of two drop-off locations, as pictured in Fig. 11. The specification is,
“Visit the loading area. If push box is active and go to left is requested, visit
dropoff L. If push box is active and go to right is requested, visit dropoff R.
Activate push box when in pickup and deactivate push box when in dropoff L
or dropoff R.”
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q1

q2
station 1

q3

q4
stockroom

q5q6
station 2

¬s1 occupied

s1 occupied

¬s1 occupied

True

True

¬s2 occupied
s2 occupied

¬s2 occupied

Fig. 9: Controller for ϕ in Example 1. Edges are labeled with the disjunction
of assignments in X that may be assumed for that transition.

station 2

station 1

stockroom

(a)

station 2

station 1

stockroom

(b)

Fig. 10: Continuous trajectories for the nonlinear unicycle abstraction in a
5 × 5 workspace, where the robot is initialized at the lower-left corner of the
workspace. Dots along the trajectory indicate the position of the robot when a
new control command is received (a time step of 0.35 seconds). Color indicates
the state of the environment (red: s1 occupied; blue: s2 occupied). (a) shows
a trajectory when the s1 occupied sensor is activated. (b) shows a trajectory
when the s2 occupied sensor is activated.

We employ a KUKA youBot to perform the task, which operates on an
omnidirectional base whose position and orientation is measured in real time.
Packages are moved by way of pushing them along the ground using the robot’s
front fender. There is one action (treated as a system variable) in this scenario,
push box, which is True whenever the robot is moving a package and False

otherwise.
The discrete abstraction for the robot is created using the activation/com-

pletion approach of Sec. 6.1.2. When pushing the box, we impose conditions
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of the under-actuated unicycle model, constrained with fixed forward veloc-
ity, as explained in Sec. 6.2 in order to assure that the box always maintains
contact with the robot. When the robot is no longer required to push the box
or when it must disengage with the box, holonomic (fully-actuated) dynamics
are imposed to allow the robot to move freely.

We synthesize, using the procedure in [7], a finite-state machine satisfying
the mission specification consisting of 6 states and 9 transitions. Controllers
were synthesized for the dynamical system using a low-level controller syn-
thesis procedure described in [7] that uses the FSM resulting from synthesis
of the general formulas to compute controllers that respect reachability un-
der the dynamics, guaranteeing any sequence of FSM states from any initial
robot state selected within the reachable set. If the process fails to compute a
controller for some behavior in the FSM, the workspace is re-partitioned and
a change to the discrete abstraction is triggered. If the resulting specification
is unrealizable, this prompts a call to the revisions approach discussed in this
paper to uncover any certificates associated with an unrealizable specification.

In this case study, the original specification could not be implemented us-
ing the imposed dynamics, necessitating an update to the abstraction and the
creation of new regions Rmiddle,L and Rmiddle,R based on reachability com-
putations (Rmiddle,L is as indicated in Fig. 11). Using the proposed revisions
approach and calls to the slugs synthesis tool, we automatically generate run-
time certificates that restrict the environment’s behavior and alter the system’s
behavior to accommodate the robot’s limited capability for movement in these
regions. In Fig. 8, one such certificate is shown for the case where the robot
is in Rmiddle,L and activating motion to dropoff L. The configuration under
consideration are highlighted in orange, and the sensor value (request) that is
required to be inactive for that configuration is highlighted in red. A similar
set of certificates was generated for Rmiddle,R.

The execution of the controllers generated as a result of the generated
revisions are shown in Fig. 11. As the robot is heading to dropoff L but while
still outside Rmiddle,L, the environment (human operator) is not violating the
certificate if the request is changed from go to left to go to right, and hence
the system is guaranteed to react to the environment and execute the task.

7 Conclusions

In this paper, we have described an automatic approach for generating run-
time certificates for missions carried out on physical systems with dynamics.
Our contribution is an approach that makes use of the problem structure for
reactive missions to arrive at certificates that preserve the behavior of the
physical system when executing a controller generated from a general speci-
fication that is agnostic to the dynamics. The proposed approach features a
mechanism for providing feedback to the user as text-based feedback, aided by
a GUI, and enables the freedom to accept or reject any such proposed formula
at synthesis time. A key benefit of our framework is the ability to generate a
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dropoff L
dropoff R

pickup

dropoff L

dropoff R

pickup

Rmiddle,L

Fig. 11: Problem set up for the box-transportation scenario. The top image
shows the KUKA youBot performing the task of delivering a box to the ap-
propriate region as determined by the sensor. The map is displayed at the bot-
tom left. The new region as a result of the reachability-based re-partitioning,
Rmiddle,L, is shown in pink. The robot’s trajectory is shown in black at the
bottom right, along with the reachable sets for the activated controllers, and a
nominal trajectory (magenta). A runtime certificate is generated (indicated in
Fig. 8) that indicates that the sensor should not change go to left to go to right
when the robot is in Rmiddle,L. For full details, the reader is referred to [7].

small number of revisions for the task, and those that are generated are concise
enough to be easily interpreted. This provides the user the best opportunity
at synthesizing a controller that is consistent with the original design intent
of the specification.

Future work includes providing a means for suggesting a richer set of pos-
sible revisions to give as feedback to the user, thereby offering him or her a
multiplicity of possible options to apply (e.g. trading off modifying the sys-
tem’s behavior vs. restricting the environment). Such an extension will involve
mining more complex formulas from the synthesis game and automatically
translating such formulas into easy-to-understand explanations. Future efforts
toward user studies would give the ability to objectively evaluate the effective-
ness of the tool as users create their own specifications for (possibly complex)
robotic systems.
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