
Nonlinear Controller Synthesis and Automatic Workspace
Partitioning for Reactive High-Level Behaviors

Jonathan A. DeCastro
Sibley School of Mechanical and

Aerospace Engineering
Cornell University
Ithaca, NY, USA

jad455@cornell.edu

Hadas Kress-Gazit
Sibley School of Mechanical and

Aerospace Engineering
Cornell University
Ithaca, NY, USA

hadaskg@cornell.edu

ABSTRACT
Motivated by the provably-correct execution of complex re-
active tasks for robots with nonlinear, under-actuated dy-
namics, our focus is on the synthesis of a library of low-level
controllers that implements the behaviors of a high-level con-
troller. The synthesized controllers should allow the robot
to react to its environment whenever dynamically feasible
given the geometry of the workspace. For any behaviors that
cannot guarantee the task given the dynamics, such behav-
iors should be transformed into dynamically-informative re-
visions to the high-level task. We therefore propose a frame-
work for synthesizing such low-level controllers and, more-
over, offer an approach for re-partitioning and abstracting
the system based on the synthesized controller library.

We accomplish these goals by introducing a synthesis ap-
proach that we call conforming funnels, in which controllers
are synthesized with respect to the given high-level behav-
iors, the geometrical constraints of the workspace, and a
robot dynamics model. Our approach computes controllers
using a verification approach that optimizes over a wide
range of possible controllers to guarantee the geometrical
constraints are satisfied. We also devise an algorithm that
uses the controllers to re-partition the workspace and au-
tomatically adapt the high-level specification with a new
discrete abstraction generated on these new partitions. We
demonstrate the controllers generated by our synthesis frame-
work in an experimental setting with a KUKA youBot exe-
cuting a box transportation task.

Keywords
motion planning, controller synthesis, nonlinear systems, ver-
ification, barrier certificates

1. INTRODUCTION
Reactive synthesis frameworks have shown promise for ro-

botics applications requiring guaranteed behaviors in unpre-
dictable environments [27, 14]. From a high-level specifica-
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Figure 1: A robot executing a user-assisted warehouse sup-
ply task.

tion, a controller is automatically synthesized, without need-
ing to code each behavior by hand. This enables sensor-rich
systems to execute tasks in a provably-correct manner. For
the workspace shown in Fig. 1, reactive synthesis addresses
tasks such as: “If you see a box, move to the pick-up lo-
cation. If you are carrying a box, then visit a requested
drop-off location. Always avoid people.”

The existence of such hybrid (mixed discrete- and contin-
uous-state) controllers relies on the the ability to extend
high-level guarantees (on a discrete abstraction of the sys-
tem) to the low-level (continuous) dynamical system. While
recent activity toward this end has focused on frameworks
that use a combination of on-line and off-line approaches
for correct-by-construction controller synthesis for nonlin-
ear systems (e.g. [18, 26, 16, 27, 2, 9]), we aim to provide
a-priori guarantees (i.e. at synthesis time) that the task is
implementable on the physical system.

One of the goals of this work is an approach that synthe-
sizes continuous controllers for a dynamical system to im-
plement the behaviors of a finite state machine in response
to a dynamic environment (factors outside the robot’s con-
trol) given the geometrical constraints of the workspace. We
build on an existing framework that implements high-level
behaviors and verifies the resulting controllers over a wide
range of possible states, given a pre-defined low-level con-
troller [9]. A high-level behavior consists of atomic actions
that implement the transitions of a state machine, possibly
in reaction to sensor events (e.g. motion between certain
regions of the workspace, while avoiding other regions). To
address the potential for conservatism of existing approaches
that return a verified set of system states given a specific con-
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troller and system model (e.g. [9]), we aim for an approach
that accepts a workspace, trajectory and nonlinear system
model, and returns a feedback controller in addition to a
verified set of continuous states.

If no such controllers can be found, there are a number
of ways to revise the task in such a way that low-level con-
trollers can be computed. For instance, if the synthesized
controllers are unable to verify the act of moving to the
pick-up location and avoid collisions with a person, then the
statement “A person should never appear in the environ-
ment” could be added to the specification. However, guar-
antees without environment reactivity may be overly con-
servative on the part of the robot. Therefore, our second
goal is to generate dynamically-informative revisions to the
high-level task, alerting the user to any conditions – specifi-
cally, assumptions on what the environment is allowed to do
– that are sufficient for the task to succeed. We aim for a
framework that is able to automatically compute partitions
in a manner that is consistent with the dynamics, resulting
in more specific user feedback such as “When heading to a
drop-off location, assume that a person will not appear when
within 1 meter of the drop-off location”.

The first main contribution of this paper is a new reachability-
based controller design procedure, termed conforming fun-
nels that takes into consideration a high-level behavior and
the geometrical constraints of a workspace, providing a cer-
tificate (funnel) that the controller will implement the de-
sired high-level behavior. We do so by introducing a new
synthesis algorithm that combines the advantages of the in-
variant funnels approach [22] for nonlinear system verifica-
tion and control barrier functions [20] to provide the ability
to “shape” the feedback controller, and hence the resulting
funnel, according to the workspace geometry. We provide a
computational framework for automating the generation of
such controllers as part of a library of controllers that are
composed together to execute a high-level task. The result-
ing funnel conforms tightly to geometrical constraints where
necessary, enabling the system to appropriately react to the
environment while guaranteeing that the dynamical system
adheres to all required high-level behaviors (e.g. collision
avoidance). We do not address the challenge of finding opti-
mal trajectories; hence we do not claim completeness in the
sense that the framework will not necessarily find controllers
wherever dynamically feasible.

Our second main contribution is a technique for gener-
ating a finer partitioning of the existing workspace based
on an existing low-level controller that cannot implement a
particular high-level behavior. New workspace regions that
result from such a partitioning carry with them information
concerning the verified behaviors of the dynamical system
when the synthesized low-level controllers are executed at
runtime. For instance, a partitioning may be created if, in
the above example, a controller cannot verify collision-free
motion for all trajectories that execute a robot’s motion to
the drop-off location. The new region for this case may
indicate the set of states where the robot is unable to re-
spond the appearance of a person when activating a certain
low-level controller. We contribute a method for reasoning
about such partitions via incremental changes to a discrete
abstraction to make it consistent with the verified low-level
controllers. In the context of a scheme developed recently
for automatically synthesizing revisions to reactive specifi-
cations, [8], our proposed approach to finding revisions to
the high-level specification may be viewed as a generaliza-

tion when the underlying discrete abstraction depends on
the result of low-level controller synthesis.

The dynamics-based partitioning approach can be dis-
played visually to users as an aid in explaining the impli-
cations of such revisions on the allowed environment behav-
iors. In this work, we do this by way of a labeled workspace
map, which visually complements verbal statements explain-
ing the revisions, which is demonstrated via both simulated
and physical experiments on an actual robot. We also note
that the creation of such abstractions (and hence revisions)
is uniquely tied to our approach to low-level synthesis. With
our proposed conforming funnels approach, we generate con-
trollers that ensure that reactive behaviors are dynamically
feasible. We evaluate for a specific example, the proposed
synthesis framework against an existing approach to low-
level controller synthesis. Through physical experiments on
a KUKA youBot, we furthermore show that the trajecto-
ries generated by the physical platform remain within the
funnels computed using our approach.

2. RELATED WORK
Numerous works have studied approaches to high-level

planning that explicitly take into consideration the dynamics
of an arbitrary nonlinear system. For static environments,
Wolff, Topcu and Murray [26] synthesize a trajectory of con-
trol inputs by solving a constrained reachability problem
that satisfies a given specification. Bhatia, et. al. [3] and
Maly, et. al. [18] introduce two variants of a multi-layered
synthesis paradigm applicable to nonlinear dynamics. In
those approaches, obstacles that are unaccounted for at syn-
thesis time are addressed by updating the planner when such
obstacles are encountered at runtime. An abstraction-based
approach is introduced in Wongpiromsarn, Topcu and Mur-
ray [27] that deals with nonlinear dynamics by formulat-
ing the synthesis task as a receding-horizon control prob-
lem. Our approach differs in that we rely on controllers
constructed ahead of time with guarantees that the con-
trollers can be executed over a wide range of continuous
states. Rather than updating the controller on-the-fly to
account for dynamics, in our approach we identify any nec-
essary changes to the abstraction at synthesis time, provid-
ing an ability to alert the user to any necessary revisions to
the specification.

A number of existing works address the reachability-based
controller design problem for nonlinear systems. Works such
as Tomlin, Lygeros and Sastry [23] and Mitchell, Bayen and
Tomlin [19] are among those that solve the reach-avoid prob-
lem in a resolution-complete manner, while Burridge, Rizzi
and Koditschek [5], Tedrake, et. al. [22] and Maidens and
Arcak [17] offer methods that are generally not complete,
but for which a solution can be found quickly for reason-
able state dimensions. While those in the former category
generally treat systems up to degree four, we opt for the
trajectory-based approaches in the latter category that are
capable of handling larger state dimensions. Specifically,
our controller synthesis procedure is based on the invariant
funnels method introduced in [22]. The general approach
has been shown to verify a variety of nonlinear systems, in-
cluding those having up to 12 states. Conner, Rizzi and
Choset [7] introduce an approach for sequencing together a
set of verified motion primitives satisfying the transitions of
a state machine encoding a non-reactive task. To accommo-
date reactive tasks, DeCastro and Kress-Gazit [9] introduce



an algorithm for generating a library of atomic (low-level)
controllers for a wide range of nonlinear systems satisfying
the transitions of a finite state machine. The synthesis step
can be repeated an arbitrary number of times in order to add
to the verified space. Compared with grid-based reach-avoid
methods, e.g. [19, 23], the funnels-based approach scales fa-
vorably with the order of the model, at the expense of com-
pleteness.

Our proposed conforming funnels approach is closely re-
lated to the control barrier functions (CBF) approach intro-
duced by Wieland and Allgower [25]. The CBF approach
uses synthesized functions known as barrier functions [20]
to construct a controller for a nonlinear system that yields
trajectories that avoid unsafe regions of the state space. The
approach was later unified with control Lyapunov functions
(CLF) by Romdlony and Jayawardhan [21] by extending the
properties of such controllers to assure asymptotic conver-
gence to a stabilizing point in addition to having guarantees
for safety. We use these basic constructions in our work to
locally modify a funnel by first computing regions of attrac-
tion to points along a trajectory without consideration to
the problem constraints, and then compute a CBF to as-
semble a low-level controller that can guarantee invariance
to any unsafe regions with respect to a specified initial set.

Our framework for computing partitions of given work-
space map departs from existing works (e.g. Kloetzer and
Belta [13]) in that we deal with tasks that are reactive in
nature, whereas existing works generally do not consider
reactive environments at synthesis time. The workspace
partitioning scheme developed in this work can be used in
conjunction with existing abstraction update procedures in
the literature (e.g. Clarke [6] and Liu and Ozay [15]), and
hence can be seen as complementary to those works. The
main difference is that our abstractions are defined on coarse
partitions based on continuous rather than on a uniform
grid, which reduces complexity. Automatic generation of
discrete abstractions have also been introduced recently in
DeCastro, Raman and Kress-Gazit [10]. In the proposed
approach, we specifically focus on the problem of adding
dynamics-informed partitions, whereas in that work, the
existing partitioning was used as the basis for construct-
ing a new abstraction. When used for reactive synthesis,
our dynamically-feasible synthesis framework may be viewed
as an instance of counterexample-guided inductive synthesis
(CEGIS) [1], where an abstraction is synthesized on the ba-
sis of the computed atomic controllers and their reachable
sets (the counterexample).

3. PRELIMINARIES
We define several basic concepts that lay the foundation

for the remainder of this paper: the finite state machine,
trajectory stabilizing controller, and the invariant funnels
method.

In this paper, we consider systems of the control-affine
form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the continuous state of the robot, u ∈ Rm
the command input of the robot at time t ∈ R≥0 and f and
g are smooth, continuous vector fields with respect to x.
Note that a wide variety of robot dynamics (mobile robots,
manipulators, walking robots) fit within this system class.

Notation: Given some T ∈ R≥0 and a function L(t) ⊂ Rn
defined for all t ∈ [0, T ], denote the set cover by L(t) for all
t ∈ [0, T ] as [L]. In particular, [L] = {x | ∃t ∈ [0, T ] s.t. x ∈
L(t)}.

3.1 Finite State Machine
For the purposes of our discussion, we assume in this work

we are given a finite-state machine A = (APe, APs, S, S0, δ),
where APe and APs are sets of atomic propositions corre-
sponding, respectively, to the environment (sensed events
that the robot must react to) and system (the actions of the
robot); S is the set of (discrete) states; S0 ⊆ S is the set
of initial states; and δ ⊆ S × 2APe × S represents a state
transition relation of the current state, the current value of
the environment input, and the successor state, respectively.

For each state si ∈ S, let Xi ⊂ Rn be a continuous set in
a space of dimension n associated with si. Also, denote ∂Xi
to be the boundary of Xi.

3.2 Trajectory-Stabilizing Control
Given an initial state x(0) ∈ X0 ⊂ Rn, where X0 is the

initial set and a time horizon T > 0, denote ξ : [0, T ]→ Rn
as a continuous finite-time trajectory of states under ẋ =
f(x) + g(x)µ(t). Here, µ : [0, T ] → Rm is a trajectory of
control inputs. To generate the trajectory ξ(t) and deter-
mine the final time T , we use a feedback linearization-based
control strategy to drive the system to a point in Carte-
sian space. Trajectories may also be found using trajectory
optimization.

About ξ(t), take the linearization of (1) to be ˙̃x = Aξ(t)x̃(t)+
Bξ(t)ũ(t), where x̃(t) = x(t) − ξ(t) and ũ(t) = u(t) − µ(t).
For a given trajectory and a linearization of the system, our
task is to design a trajectory-stabilizing controller. We do
so by solving the time-varying LQR problem [12] for the lin-
earized system, whose result yields the full-state feedback
control input u(t) = K(t)(x(t) − ξ(t)) + µ(t). Under this
feedback, we denote the closed-loop system as

ẋ = f(x) + g(x) [K(t)(x(t)− ξ(t)) + µ(t)] = f̂(x, t), (2)

where the closed-loop system f̂(x, t) is defined for all t ∈
[0, T ].

3.3 Invariant Funnels
We now summarize the invariant funnels method of [22],

which takes as input a trajectory and stabilizing controller
introduced in Section 3.2. Define a Lyapunov function for (2)

to be a positive-definite function V (x, t) with V̇ (x, t) =
∂V (x,t)
∂x

f̂(x, t) < 0. For some t ∈ [0, T ] and ρ : [0, T ]→ R≥0,
define the ρ-sub-level set of V (x, t) as

L(t) = {x | V (x, t) ≤ ρ(t)}.

Let Xi, Xj ⊂ Rn be regions in the configuration space where
the regions are adjacent. Consider a trajectory ξ whose ini-
tial value is ξ(0) ∈ Xi and final value is ξ(T ) ∈ Xj and
at every time instant stays in Xi ∪ Xj . The problem of
computing an invariant funnel is one where we verify the
largest set of states about ξ that satisfy the same proper-
ties as ξ; namely, reachability from Xi to Xj and invariance
to Xi ∪Xj (safety from entering/colliding with the comple-
ment of Xi ∪ Xj). Such a set is found via the following
maximization problem:

max
ρ(t)≥0

ρ(t), t ∈ [0, T ] (3)



s.t. V (x, t) ≤ ρ(t) =⇒ V̇ (x, t) ≤ ρ̇(t), ∀t ∈ [0, T ], (4)

Lij(T ) = {x | V (x, T ) ≤ ρ(T )} ⊆ G, (5)

for a goal set G ⊆ Xj . Computational tools such as the
semidefinite programming solvers SeDUMI and MOSEK can
solve a time-discretized form of the above problem, when
expressed as a sums-of-squares program. Such tools apply to
systems that are expressed as differential equations that are
polynomial in their arguments; for this reason, we assume
system models of this form throughout this paper. In [9],
additional constraints are introduced to compute bounded
funnels that are guaranteed to stay within an invariant Xi∪
Xj ,

Lij(t) = {x | V (x, t) ≤ ρ(t)} ⊆ Xi ∪Xj , (6)

for all t ∈ [0, T ]. We denote any bounded funnel Lij(t) as a
transition funnel if i 6= j and any bounded funnel Li(t) =
Lii(t) as an inward-facing funnel.

We briefly summarize the algorithm in [9], which provides
a twofold procedure for constructing a library of controllers
for all transitions in a state machine A. First, let Ii be the
index set of successors to state si; i.e. Ii = {k | ∃σ ∈ 2APe :
(sk, σ, si) ∈ δ}. For a particular si ∈ S and j ∈ Ii, construct
a controller and label the associated funnels Lij .

Next, if Ii contains two or more elements, additional con-
trollers must be created to fulfill reactive behaviors ofA; that
is, behaviors that ensure, for all time instants along any tra-
jectory in Lij enabling the transition from Xi to Xj , the
system is able to react to sensor inputs and move instead
to Xk, k ∈ Ii, k 6= j. In this case, denote the reactive-
composition (RC) set as the set in which any outgoing tran-
sition from the current region to successor regions is possible,
i.e.

⋂
k∈Ii [Lik]. For each Lij and Li, compute a new inward-

facing funnel Li whose initial set is taken from Lij such that
[Lij ] ∩ ∂Xi ⊆ [Li] and whose final set G =

⋂
j∈Ii [Lij ], each

time storing them into the library. The composition require-
ment [Lij ] ∩ ∂Xi ⊆ [Li] assures that the system can react
to the environment regardless of which trajectory is used in
Lij , up to the time at which it leaves Xi. More precisely,
for all times t for which ξ(t) ∈ [Lij ]∩Xi, there exists a time
t′ ≥ t for which ξ(t′) ∈ [Li].

For example, consider a unicycle model consisting of three
continuous states (x, y, θ): two Cartesian displacements and
an orientation angle and whose command input is its angular
rate, ω. The unicycle is assumed able to turn but with
turning radius limited to remain below a fixed threshold and
may only move in the forward direction with fixed velocity.
For the example shown in Fig. 2, a controller and funnel L12

is constructed to implement movement between regions X1

to X2 using an under-actuated unicycle model. With L12,
another controller and funnel L1 is computed to implement
the transition keeping the system in X1. The intersection of
[L12] and [L1] (the RC set) indicates the states in which both
transitions (s1,True, s2) and (s1,False, s1) can be achieved.
Note that the maximization in (3) helps us to achieve a
maximal set with respect to the given trajectory. Finally,
the goal set G is determined from composition requirements.
In particular, the set G when computing L12 is X2, while
G for L1 is the computed funnel L12. For the remainder of
this paper, we assume funnels are computed in this manner.

Note that that above algorithm can fail at finding such an
inward-facing funnel Li in certain cases. For example, con-
sider the unconstrained funnel shown in Fig. 2b. The funnel
shown satisfies the reactivity requirement [L12]∩∂X1 ⊆ [L1],

but not the invariance condition [L1] ⊆ X1. If the funnel
were smaller, it could satisfy invariance, but at the expense
of reactivity for all trajectories in L12. The proposed ap-
proach outlined in the next section directly addresses this
issue by finding a controller and funnel for a given trajec-
tory that satisfies both the reactivity condition and the in-
variance condition.

4. PROBLEM STATEMENT
In this paper, we address the following two problems.

Problem 1 (Fulfillment of a reactive behavior for si ∈ S).
Given the dynamics f and g, a transition funnel Lij, region
Xi, a goal set G ⊆ Xi, find a trajectory ξ, µ where ξ(t) ∈ Xi
for all t ∈ [0, T ] and synthesize a low-level controller u(t)
stabilizing the system to ξ and a funnel B(t) ⊆ Xi such that
[Lij ] ∩Xi ⊆ [B].

Problem 2 (Partial fulfillment of a reactive behavior for
si ∈ S, refining the workspace partitions). If Problem 1
fails to be solved, given the dynamics f and g, a transition
funnel Lij, region Xi, a goal set G ⊆ Xi, find a trajectory
ξ, µ where ξ(t) ∈ Xi for all t ∈ [0, T ] and synthesize a
low-level controller u(t) and a funnel B(t) ⊆ Xi. Compute
a new region Xij defining the portion of the controller Lij
for which reactive behaviors cannot be attained, updating the
mission specification accordingly.

Note that Problem 1 does limit the discussion to inward-
facing funnels. We may find transition funnels for (s`, ·, si)
by setting a goal G ⊆ Xj , replacing the invariant Xi with
Xi∪Xj , and relaxing the composition requirement to L`i(T ) ⊆
[B], provided we are given L`i such that L`i(T ) ⊆ Xi.

5. CONFORMING FUNNELS
In this section, we introduce an approach that attempts

to compute a bounded funnel when the procedure outlined
in Section 3.3 fails to do so. We do this by making use
of the notion of control barrier functions; functions whose
parameters can be tailored to achieve a certificate of safety
with respect to an unsafe set. Such functions parameter-
ize a nonlinear feedback control law that is executed by the
system for the certificate to hold. In our case, for a given
trajectory, we generate a sequence of certificates and feed-
back controllers for the system, giving rise to a funnel that
conforms to the required invariant set.

In more precise terms, given trajectories ξ, µ, and con-
troller K, the problem is to find controller parameters that
verify the largest set of states that satisfies the invariance
and reachability properties of ξ with respect to an invari-
ant set. The controller leverages the proven idea of unified
control barrier functions and control Lyapunov functions,
which is extended in this section to the case of time-varying
trajectory stabilization. While the developments in this sec-
tion are largely inspired by the work of [25, 21], they are
complementary to those works as we also offer a computa-
tional framework through sums-of-squares optimization to
numerically compute such barrier functions and controllers.

5.1 Using Control Barrier Functions to Sat-
isfy State Constraints

Suppose we extend the control input as u(t) = K(t)(x(t)−
ξ(t))−µ(t)+ū(t) = U(t)+ū(t). We then obtain the following
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L12(t)
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L1(t)

(b)

X0

B1(t)
B1(0) B1(t1)
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Figure 2: Constructing conforming funnels for a state machine: S = {s1, s2} with transitions {(s1,True, s2), (s1,False, s1)}.
(a) shows a funnel L12 computed for a three-state unicycle model (the funnel shown is a projection onto R2) for a low-level
controller satisfying the transition. (b) shows a funnel L1 (green) that violates the invariant preventing it from entering X2.
(c) shows a conforming funnel B1(t) that satisfies the transition of staying in X1. B1(t) consists of a segment of L1 (green),
and a barrier whose zero-level set is shown at specific time instants.

augmented system

ẋ = f̂(x, t) + g(x)ū, t ∈ [0, T ]. (7)

The authors of [25] show that there exists a control ū(x)
yielding a control barrier function (CBF) that ensures safety
of trajectories within a nonlinear system. In this case, the
CBF provides a certificate of safety, but in general does not
guarantee convergence, which we require in order to ensure
reachability of trajectories from an initial set to a goal set.
Theorem 3 in [21] remedies this by expressing a set of con-
ditions to construct a unified CBF and control Lyapunov
function (CLF) to ensure safety of a time-invariant system
whose static equilibrium lies in the interior of the barrier.

In this work, we extend this to the time-varying case for
systems of the form of (7), where the problem is to find a
controller that stabilizes to a trajectory rather than a static
equilibrium.

Consider a function B(x, t) defined over an interval t ∈
[0, T ] and let a(x, t) = ∂B(x,t)

∂x
f(x, t) + ∂B(x,t)

∂t
, bT (x) =

∂B(x,t)
∂x

g(x), and Xu denote the unsafe set. The conditions
for the time-varying problem assert that, if B(x, t) can be
found that satisfies the following conditions:

x ∈ Xu =⇒ B(x, t) ≥ 0 (8)

∂B(x, t)

∂x
g(x) = 0 =⇒ ∂B(x, t)

∂x
f̂(x, t) +

∂B(x, t)

∂t
< 0 (9)

x ∈ X0 =⇒ B(x, t) ≤ 0 (10)

then the control law:

ū =

{
−a+
√
a2+γ2bT b

bT b
b for b 6= 0

0 for b = 0
(11)

ensures the safety of the system with respect to the initial
conditions X0, where γ > 0 is a tunable parameter. If found,
B(x, t) is a time-varying control barrier function (TV-CBF).
In words, for a given t ∈ [0, t1], with 0 < t1 ≤ T , the level set
B(x, t) = 0 certifies a safety bound where B(x, t) is strictly
positive inside Xu, and strictly negative within the initial
set X0, provided that the control input ū is applied for all x
on the barrier certificate (i.e. in the set {x | B(x, t) = 0}).

In similar fashion to [21], we also show that the control law
ū (namely (11)), when applied in the interior of the barrier
(B(ξ(t), t) ≤ 0) simultaneously stabilizes the system to the
trajectory and keeps the system safe within the barrier. The

following provides a statement on the safety and reachability
properties if the above conditions hold true:

Proposition 1. Given the trajectory-stabilizing feedback sys-
tem (2), an unsafe set Xu, and some initial set X0 ⊂ Rn\Xu,
then a feasible solution to (8)–(10) yields a safe trajectory
with respect to Xu and guarantees trajectory convergence if
u(t) = U(t) + ū(t), with ū(t) satisfying (11).

Proof. To show that ū(t) satisfying (11) gives rise to a tra-
jectory stabilizing controller follows by showing that B(x, t)
is smooth (as per Lemma 3.6 in [11]), and that it results in a
system that is a control Lyapunov function. Smoothness fol-
lows trivially by construction ofB(x, t). When ∂B(x,t)

∂x
g(x) 6=

0, then

∂B(x, t)

∂x
f̂(x, t) +

∂B(x, t)

∂x
g(x)ū(t) =

−

√∥∥∥∥∂B(x, t)

∂x
f̂(x, t)

∥∥∥∥2 + γ

∥∥∥∥∂B(x, t)

∂x
g(x)

∥∥∥∥2 < 0.

for γ > 0 and t ∈ [0, t1]. Otherwise (when ∂B(x,t)
∂x

g(x) = 0),
∂B(x,t)
∂x

f̂(x, t) + ∂B(x,t)
∂t

< 0 holds, by construction, from
condition (9). As u(t) = U(t) + ū(t) is applied whenever
B(x, t) ≤ 0, and, for a given t ∈ [0, T ], then B(x, t) =
minxB(x, t) precisely when x = ξ(t), the system is attrac-
tive to the trajectory.

We must also show that such controllers guarantee invari-
ance to the barrier. If (8)–(10) is feasible for X0 then, by
construction, there exists a B(x, t) for which B(x, t) = 0
separates Xu and X0 for any given t ∈ [0, t1].

Notice that the problem of finding the TV-CBF in (8)–
(10) is within the sums-of-squares class of problems for cases
where the system and constraint sets are polynomial in x
and t. We have encoded this as such and adopt the pack-
age MOSEK in this work as the solver. Note also that the
problem of trajectory stabilization generalizes many aspects
of robotics in the case where there is no single global equi-
librium; for example, the under-actuated unicycle model in-
troduced in the previous section. For problems where it
is possible to find a sufficiently large region of attraction
about a static equilibrium, the time-invariant counterpart
of Proposition 1 will suffice (Theorem 3 of [21]).

To summarize the result, assume we have an augmented
system of the form (7) that is stable about a neighborhood of



a nominal trajectory ξ, µ over a finite time horizon t ∈ [0, T ]
(recall that this is true because u subsumes a time-varying
LQR controller). Solve for a barrier function that meets
state constraints (required invariants for the funnel) accord-
ing to (8)–(10). If one is found, then this barrier function pa-
rameterizes a control law of the form (11) that, when applied
to the augmented system, ensures that, for all states starting
in the set {B(x, t) ≤ 0}, the system is guaranteed to con-
verge to the trajectory (make progress along the trajectory)
and remain invariant to the zero-level set of B(x, t) for all
t ∈ [0, T ]. The resulting set B(t) : R≥0 → {x | B(x, t) ≤ 0}
is a conforming funnel for the feedback-controlled system.

5.2 Computational Approach
As opposed to the funnel formulation of Section 3.3 in

which the objective is to search for a ρ(t) for a function
with fixed parameterization, the TV-CBF conditions search
directly for a barrier that is a function of x. This generally
requires a larger number of decision variables, giving rise to
a greater number of computations. We therefore outline a
procedure for computing funnels using the TV-CBF objec-
tives with small computational expense by bootstrapping it
with an unconstrained funnel.

The procedure is as follows. As pictured in Fig. 3a–3b,
compute first an unconstrained funnel according to the con-
ditions (3) (i.e. without the addition of (6)). If this hap-
pens to satisfy the constraints (6), then we accept this fun-
nel and return. Otherwise, as illustrated in Fig. 3c, select
t1 as the minimum time where Xi ∪ Xj contains the por-
tion of L(t) for t ∈ [t1, T ]. On the interval (t1, T ], we let
Lsuff = {L(t) | t ∈ (t1, T ]} be a suffix of the original fun-
nel that is safe with respect to the invariants over for all
t ∈ (t1, T ]. We then set the initial condition as X0 = Lij(t∗)
(where t∗ will be introduced in Sec. 6.1). In order to enforce
composability of B(t) with the suffix funnel, we ensure that
B is contained inside L at time t1. Therefore, we take the
unsafe set Xu to be L(t1) at time t = t1; at all prior times
t = [0, t1), we set Xu = Rn\Xi. We also set the constraint
that [Lij ] ∩ Xi =⇒ B(x, t) = 0. This constraint ensures
that the generated funnel is valid with respect to the reac-
tivity condition for all trajectories in Lij .

We then proceed to compute a B(t) according to (8) as
per Proposition 1 over the interval [0, t1]. The computed
conforming funnel and suffix funnel combine to form an ag-
gregate funnel that verifies reachability to the goal set G
and safety with respect to Xu for a well-defined neighbor-
hood about the trajectory:

B(t) =

{
{x | B(x, t) = 0} for 0 ≤ t ≤ t1
Lsuff (t) for t1 < t ≤ T

Note that B(t) is merely L(t) for the case where the TV-CBF
computations are not necessary.

Observe that we do not preserve the portion of the funnel
before it leaves the invariant set because the barrier com-
putations require an over-approximation to the initial set in
order to guarantee composition of funnels. At such time in-
stants, this imposes tight constraints on the resulting barrier
(the barrier would have to be larger than the last non-red
ellipse shown in Fig. 3b, but smaller than the boundary). In
practice, this has rendered the optimization problem infeasi-
ble in the majority of cases tested. Note that this controller
will not exhibit Zeno behavior, since the the barrier function
is smooth by construction and the control law involves no
state-dependent switching.

G

X0

ξ(t)

(a)

L(t)
0 ≤ t ≤ T

L exits the
invariant

(b)

t = t1

Lsuff (t)
t1 < t ≤ T B(x, t)

0 ≤ t ≤ t1

(c)

Figure 3: Generating conforming funnels. (a) A trajectory is
created steering the system from the start set X0 to G. (b) A
fixed-parameter funnel is created, and checked for collisions.
(c) L exits the invariant up to t = t1; therefore a conforming
funnel is computed respecting the invariant up to t1.

6. WORKSPACE RE-PARTITIONING AND
ABSTRACTION GENERATION

In the case where conforming funnels cannot be created
for the high-level behavior (for the choice of trajectory), we
may use controllers that do not verify the behavior exactly
to create new workspace partitions, and update the discrete
abstraction of the system on those partitions. In this vein,
we introduce the second main contribution of this paper:
an algorithm for constructing controllers and partitions in
the case that a controller has not been found to satisfy a
particular high-level behavior. We furthermore introduce
a procedure for updating a specification written as linear
temporal logic based on the results of the partitioning. The
approach to partitioning lends well to automatic generation
of intuitive explanations to users in the case where no sat-
isfying finite state machine can be found; we discuss these
implications via a case study.

6.1 Partial Fulfillment of High-Level Behav-
iors

Our goal is to find inward funnels for the entirety of the
time the system spends in Xi. Notice that if, for a particular
transition funnel Lij , a funnel Bi is found according to the
criteria set forth in the Sec. 5, the system is reactive all the
way up to the boundary; i.e. [Lij ]∩∂Xi ⊆ [Bi]. This means
the transition (si, ·, sj) in A has been implemented exactly.

Otherwise, there exists a gap between the inward funnel
and the region boundary where the robot may no longer
reach the RC set without first crossing the boundary. We
call such a gap a reactivity gap which is nonzero when-
ever there exist trajectories in Lij that do not intersect
with the set Bi up to the point at which it leaves Xi, i.e.
[Lij ] ∩ ∂Xi 6⊆ [Bi]. Strictly speaking, this would result in
failure to generate low-level controllers that satisfy A, or
else necessitate searching for new transition funnels Lij that



result in zero reactivity gap, a potentially expensive process
with no termination guarantees.

In order to proceed with generating controllers in the case
where such a transition cannot be fulfilled, we modify the
original specification via a re-partitioned workspace given
the existing set of low-level controllers. We do so with an
approach that minimizes the reactivity gap modulo the given
Lij . This translates into the problem of searching for a tra-
jectory and funnel that is able to guarantee reactive compo-
sition and invariance to the region as late as possible along
the transition funnel Lij ; i.e. find a B∗i as the argument for
which

t∗ = max
Bi s.t. (8)–(10)

{t | Lij(t) ∩Xi ⊂ [Bi]}. (12)

Given B∗i , the reactivity gap for Lij is defined as a new
region

Xij = {Lij(t) | t ∈ [t∗, T ]}\[B∗i ] ∩Xi. (13)

For visualization purposes, we can over-approximate Xij via
a polytope projection onto, for example, a 2-D workspace
map. With this new region defined, a procedure for updating
the discrete abstraction in the context of linear temporal
logic specifications is provided in the next section.

6.2 Robot Abstractions for Linear Temporal
Logic Specifications

Reactive tasks may be expressed as linear temporal logic
(LTL) specifications. LTL formulas are defined over the set
AP of atomic (Boolean) propositions by the recursive gram-
mar ϕ ::= π ∈ AP | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2. The
following operators are derived from the Boolean operators
∧ “conjunction” and ¬ “negation”, and the temporal opera-
tors © “next” and U “until”: “disjunction” ∨, “implication”
⇒, “equivalence”⇔, “always” 2, and “eventually” 2. For
a description of the semantics of LTL, we refer the reader
to [24].

Letting π ∈ APe ∪ APs represent a binary proposition, a
mission specification is expressed as an LTL formula of the
form:

ϕ := ϕe =⇒ ϕs,

where ϕe and ϕs are defined over APe ∪ APs ∪ ©APe ∪
©APs, and are further decomposed into formulas for initial
conditions, safety conditions to be satisfied always, and goals
to be satisfied infinitely often. Considering specifications of
this form allows us to take advantage of efficient algorithms
for synthesizing a finite-state machine A that satisfying the
specification [4].

In the context of LTL mission specifications, a discrete
abstraction is a set of LTL formulas that model the discrete
behavior of the underlying continuous system. We encode
discrete abstractions using the LTL encoding of [10], which
takes into account actions with arbitrary completion times,
allowing for a rich set of behaviors to occur concurrently.
Under this encoding, let πa` ∈ APs denote the proposition
that is True when activating a transition to some region X`,
and π` ∈ APe denote the proposition that is True when
motion to X` has been completed.

If B∗i is computed such that there is a nonempty reactivity
gap, i.e. [Lij ] ∩ ∂Xi 6⊆ [B∗i ], we update the abstraction as
follows. The first step is to compute a reactivity gap, as the
set according to (13), then extend the set of propositions
APe with a new region proposition πij that is True when

the system is in Xij . We then append the following formula
to the formula for environment assumptions ϕe:

2 (πai ∧ πi ∧©πi ∧ ¬πij =⇒ ©¬πij)∧
2 (πaj ∧ πi ∧ ¬πij =⇒ ©πi)∧
2 (πaj ∧ πi ∧ πij =⇒ ©πij ∨©πj)∧
2 (©¬πi =⇒ ©¬πij) . (14)

The first condition enforces that, if the system is commanded
to remain in Xi, it must not enter Xij . The second and third
conditions enforce that if the robot is commanded to enter
Xj when in Xi, it cannot do so without first entering Xij .
The last condition encodes the fact that Xij is a subset of
Xi.

6.3 Putting It All Together: Low-Level Con-
troller Synthesis

We now describe an algorithm for constructing verified
atomic controllers satisfying the reactive composition prop-
erty according to criterion (12) for a transition from a state
i to another state j. In line 8 of Algorithm 1, the optimiza-
tion problem (8)–(10) is solved with the additional criteria
where the resulting barrier conforms precisely for the por-
tion of the invariant that intersects with the transition Lij .
If this problem has a solution, this means that for any con-
trolled trajectory from Xi to Xj , the system is verified to
be able to react to the environment and move instead to
any Xk, k ∈ Ii, k 6= j. For instance, if the robot may
be represented by a fully-actuated (e.g. holonomic) model
where the robot can move instantaneously in any direction,
then the algorithm will be able to create controllers that
satisfy a transition that exploits this property to its fullest.
If this does not succeed, then line 10 solves the optimization
again without this restriction. If successful, the abstraction
is updated in line 12, and the funnel is returned in line 22.
Otherwise, the time tinit is reduced in line 19 and the pro-
cess repeats. Note that line 2 is a restatement of (12) that
finds a suboptimal t∗, tinit, by iterating backward in time a
fixed amount τ .

Upon returning from the algorithm, a decision is made
to synthesize another finite state machine (if necessary with
the aid of any LTL-based revisions as explained in [8]). If
the abstraction has changed after constructing controllers
for each transition, then synthesis takes place; otherwise it
does not. If this new finite state machine is simulated by the
old one, i.e. the new one contains a subset of the behaviors of
the old one, then the existing library of low-level controllers
is deemed sufficient for the finite state machine. Otherwise,
new low-level controllers are generated in a manner that re-
uses as much of the existing library as possible.

The overall synthesis approach is sound. Prior work [9]
showed that the library of low-level controllers guarantees a
given specification from which those controllers were gener-
ated. This, in conjunction with the fact that the abstraction
is updated such that it simulates the continuous behaviors
under the computed controllers, proves that our approach is
sound under the repartitioned problem. While not complete
in general, our approach refines the workspace partitions
whenever an FSM cannot be implemented. Because the op-
timization problem of (8)–(10) yields a control law, if one
exists, our approach is complete under the given choices of
trajectories and feedback controller parameters.



Algorithm 1 Computing an inward-facing funnel Bi for si
to implement a change from successor state sj to sk, j, k ∈
Ii, j 6= k.

procedure reactiveComposition(Lij ,Xi,Xj ,τ)
tinit ← argmaxt{t | Lij(t) ∩Xi 6= ∅}
while tinit ≥ 0 and not feasible do

create a trajectory from Lij(tinit) to the RC set for
state i

5: Li, feasible← solution to (3)
if feasible and [Li] 6⊆ Xi then

t1 ← argmaxt{t | Li(t) ∩ (Rn\Xi) 6= ∅}
Bi, feasible ← solution to (8)–(10) with additional

constraints [Lij ] ∩Xi =⇒ Bi(x, t) = 0
if not feasible then

10: Bi, feasible← solution to (8)–(10)
if feasible then

compute Xij and update the abstraction
as (14)

end if
end if

15: else if feasible then
Bi ← Li

end if
if not feasible then

tinit = tinit − τ
20: end if

end while
return Bi

end procedure

7. EXAMPLE: A BOX TRANSPORTATION
TASK

In this human-interactive problem domain, the task is to
move packages from a pick-up area to one of two drop-off
locations, as pictured in Fig. 1. Formally, “Visit the loading
area. If push box is active and go to left is requested, visit
dropoff L. If push box is active and go to right is requested,
visit dropoff R. Activate push box when in pickup and deac-
tivate push box when in dropoff L or dropoff R.” We employ
a KUKA youBot to perform the task, which operates on an
omnidirectional base whose position and orientation is mea-
sured in real time. Packages are moved by way of pushing
them along the ground using the robot’s front fender. There
is one action (treated as a system variable) in this scenario,
push box, which is True whenever the robot is moving a
package and False otherwise.

In our discrete abstraction of the problem, we do not ex-
plicitly model the dynamics of the box, but rather we impose
certain conditions that are required of the dynamics in or-
der to assure that the box always maintains contact with
the robot. We therefore impose the dynamics of a unicycle
that is capable of forward velocities up to a certain forward
velocity and within a given range of turning radii. Suitable
maximum linear and angular velocities were determined ex-
perimentally in order to ensure the box is always in contact
with the robot. In order to disengage the box, we impose
holonomic (fully-actuated) dynamics with negative forward
velocity. When push box is False, the holonomic model is
put into effect; otherwise, the unicycle model is used. We
use the proposed approach to design controllers for this ex-
ample.

7.1 Synthesis and Workspace Re-Partitioning
We express the task as a mission specification (linear tem-

poral logic formulas), from which we synthesized a high-level

Xdropoff L

Xdropoff R

Xpickup

Figure 4: A trajectory for the box-transport example for
the case where the environment is continually issuing the
request go to right.

state machine using the slugs synthesis tool1. Our state
machine consists of 6 states and 9 transitions. Controllers
were synthesized using the proposed conforming funnels ap-
proach and Algorithm 1. Our approach was coded as a set of
MATLAB routines; with our implementation, each reactive
funnel took on average 5.2 minutes to compute on a laptop
with Intel Core i7 2.8GHz processor and 8GB of RAM. The
original specification and dynamics necessitated an update
to the abstraction that, in turn, required an update to the
original specification.

Based on the abstraction update, a new finite state ma-
chine could not be synthesized without additional environ-
ment assumptions. Using the revisions approach algorithm
in [8], we automatically generated environment assumptions
that restrict its behavior in the newly-generated reactive
gap regions. Specifically, given the regions Xmiddle,L and
Xmiddle,R, additional assumptions were generated in the form
of LTL formulas added to the environment subformula. In
natural language, the formulas state the following: “If the
robot is in region middle,L, heading to dropoff L and acti-
vating push box do not issue the request go to right,” and
“If the robot is in middle,L, heading to dropoff R and acti-
vating push box do not issue the request go to left.” With
this new controller (10 states and 9 transitions), the low-
level controller synthesis process continued for the new state
machine.

7.2 Execution of the Conforming Funnels
The proposed approach was evaluated in a set of labora-

tory experiments. The hybrid controller was executed on a
laptop computer connected wirelessly to the youBot using
the Robot Operating System (ROS) as the communication
layer. The controller ran at a rate of approximately 5 Hz and
the robot pose was obtained via a motion capture system.

A trajectory showing the execution of the controller on
the youBot is pictured in Fig. 4 for the case where the envi-
ronment is static. Notice that, when push box is True, the
robot executes the unicycle model and hence makes gradual
turns; otherwise the holonomic model is active and the robot
follows straight paths. An example of the robot reacting to
the environment is depicted in Fig. 5. In Fig. 5c, the robot is
executing a conforming funnel in order to fulfill a changing
request just before the robot enters dropoff L. The robot’s
resulting motion is smooth, remains within the funnel, and

1http://github.com/LTLMoP/slugs



t = 0s

dropoff L dropoff R

pickup

dropoff L

dropoff R

pickup

Xmiddle,L

(a)

t = 4s

(b)

t = 16s

(c)

t = 40s

(d)

Figure 5: Experimental results for the box-transportation scenario under a dynamic environment, a sequence of images
captures taken from the video available at: https://youtu.be/1XEV0Ga3UEY. (a)–(d), top, show the robot at several time
instants as it delivers a box, with the inset showing the sensor values go to left, go to right. The map is diplayed at bottom
of each subfigure, along with the robot’s trajectory (black), the activated funnels, and the nominal trajectory for each funnel
(magenta). The pink region in (a) is the reactivity gap region Xmiddle,L. Note that the sensor value changes from go to left
to go to right at the time instant shown in (b).

Xmiddle,L

Xmiddle,R
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Xmiddle,L

Xmiddle,R
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Figure 6: Evaluation of the reactivity of the system to
changes in the environment for the box-transport problem.
(a) and (b) show reactivity gap regions computed using, re-
spectively, the conforming funnels approach and funnels ap-
proach from [9].

can be seen to converge to the nominal trajectory. A com-
plete video demonstrating the controllers is available at:
https://youtu.be/1XEV0Ga3UEY.

The conforming funnels approach was compared against
funnels generated using the approach from [9]. As can be
seen in Fig. 6a, the reactivity gap regions generated with
the proposed approach are considerably smaller than those
computed in the formulation of [9] in Fig. 6b. This is due
to the fact that such a conforming funnel can be computed
using a trajectory starting close to the drop-off region and
inside the transition funnel yet still also able to verify the
set of states in the transition funnel. The implication of this
improvement is a greater responsiveness to the environment
when the robot is in close proximity to the drop-off areas.

8. CONCLUSIONS
In this paper, we address two problems: (1) synthesizing

hybrid controllers that allow a robot to react to its environ-
ment whenever dynamically feasible given the geometry of
the workspace, and (2) an automated approach for trans-
forming dynamically-informative revisions into changes to
the specification, in the case that a controller cannot be ob-
tained for a high-level behavior. To address the first, we con-
tribute a method for synthesizing correct-by-construction
controllers with respect to given high-level behaviors, the ge-
ometrical constraints of the workspace, and a robot dynam-
ics model. Our approach generalizes existing techniques for
nonlinear system verification using fixed-parameter funnels.
In situations where the high-level behaviors cannot be ful-
filled strictly, we also contribute an algorithm that uses the
controllers to re-partition the workspace and automatically
adapt the high-level specification with a new discrete ab-
straction generated on these new partitions. The approach
is general; it is intended for a finite state machine synthe-
sized from any reactive specification and any system model
provided it can be expressed in terms of polynomial ODEs.

In the future, we will extend the approach to be more
complete so that controllers can be generated over a wider
portion of the state space. To address this challenge, it will
become necessary to explore the possibility of optimizing
among trajectories that both fulfill the high-level behavior
and result in funnels that are maximal. Future work also
includes exploring the significance of parameter adaptation
in the construction of TV-CBF-based controllers; for exam-
ple, the order of the polynomials used to parameterize the
barrier function. Using the TV-CBF method, we intend to
explore the computation of robust motion primitives that
admit controllers that are provably correct over a wide ar-
ray of parameters for the system model. Lastly, we intend
to use these primitives as an aid for performing synthesis
when unknown changes to the system model occur during
execution.

https://youtu.be/1XEV0Ga3UEY
https://youtu.be/1XEV0Ga3UEY
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