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Abstract

Planning robotic missions in environments shared by humans involves designing controllers
that are reactive to the environment yet able to fulfill a complex high-level task. This paper intro-
duces a new method for designing low-level controllers for nonlinear robotic platforms based
on a discrete-state high-level controller encoding the behaviors of a reactive task specification.
We build our method upon a new type of trajectory constraint which we introduce in this paper
– reactive composition – to provide the guarantee that any high-level reactive behavior may be
fulfilled at any moment during the continuous execution. We generate pre-computed motion
controllers in a piecewise manner by adopting a sample-based synthesis method that associates
a certificate of invariance with each controller in the sample set. As a demonstration of our
approach, we simulate different robotic platforms executing complex tasks in a variety of envi-
ronments.

1 Introduction

As robots become more sophisticated, we see increasing potential for them to perform complex
tasks. Sensor-rich platforms such as self-driving cars, robotic manipulators, humanoids, and un-
manned air vehicles enable capabilities ranging from human-assistance to search-and-rescue to
exploration. To operate effectively in the real world, a robot must be able to perform tasks in a
way that avoids causing harm to itself or the people it encounters, by appropriately reacting to the
environment. Tasks that are reactive require that the robot’s behaviors change in response to real-
time sensory information. It is therefore imperative that the controllers we provide to these robots
produce behaviors that are guaranteed to satisfy all task instructions provided to the robot given
our knowledge of the environment. Building upon existing concepts from the controller verifica-
tion and motion planning communities, we present an automated methodology for computing (if
possible) a set of verified controllers that fulfill the reactive behaviors of a high-level task.

In the controller synthesis literature, recent activity has focused on solving the “reach-avoid”
problem for nonlinear systems. Methods based on a game-theoretic representation of the prob-
lem have been solved [DGH+11], as have game-theoretic solutions involving a sequence of goals
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[THDT12]. Rather than working directly with the nonlinear system, other researchers compute
symbolic abstractions of the underlying system model [ZPMT12] for which efficient algorithms
exist for the exact computation of reachable sets. The particular formulation in [ZPMT12] enables
the synthesis of hybrid controllers for goal satisfaction with static obstacles [MDT10].

Concepts from nonlinear controller verification have been adopted in the motion planning
domain. For example, libraries of verified motion plans have been generated for hybrid sys-
tems [JFA+07] as well as for nonlinear polynomial systems [TMTR10]. Both use a sampling-based
strategy and employ solution methods that are efficient enough to allow on-line re-planning based
on runtime sensor information [MTT12]. The latter method ( [TMTR10, MTT12]) builds upon the
controller sequencing work of [BRK99] by combining sampling-based motion planning with local
feedback controllers to define a robust neighborhood (funnels) computed about one of the sample
trajectories. Controller sequencing has been applied to specific robotic applications; for example,
in [CCR06], local verified motion controllers have been devised for robots with nonholonomic
kinematic models. While each of these methods provide the framework for motion planning in
the context of safety and reachability, they are not immediately equipped to handle automatic
synthesis of controllers for reactive tasks with possibly infinite duration.

Ongoing work in the robotics community has been devoted to developing provably correct
synthesis algorithms for complex robot task specifications. A variety of techniques exist for syn-
thesizing controllers for non-reactive tasks [KB06, LK04, Fra01, KF09, BKV10], as well as those
for reactive tasks [WTM10, KGFP09]. The typical workflow is a three-step process: abstract the
system model and the robot’s workspace; perform synthesis based on the abstraction and task
specification; and design low-level controllers fulfilling each of the behaviors in the high-level
controller. Low-level controller design can be performed using potential functions [CRC03], vec-
tor fields [BH04], or rapidly-exploring random trees (RRTs) [LaV06], to name a few. While such
strategies often suffice for fully-actuated robots, correctness guarantees usually do not extend to
robots with more complicated dynamics. The work of [KGCC+08] describes an application of
provably-correct reactive synthesis to cars with a rear-drive Ackermann steering model. In that
work, the authors manually designed a palette of controllers specific to the robot model that could
be automatically instantiated in different environments. Here we describe algorithms for automat-
ically generating such controllers for a wider class of nonlinear robot models. Some researchers
have extended provably correct controller synthesis to nonlinear systems [LOTM13, WTM13].
These methods, however, rely on finding suitable discrete abstractions for the nonlinear system
model, if any such abstractions exist. Others have introduced a multi-layered synthesis strategy
in which the high-level controller is designed off-line, while the motion planning layer processes
the high-level requests by accounting for nonlinear dynamics and any encountered workspace ob-
stacles [BKV10, MLK+13]. However, the tasks that are considered in those works are non-reactive
and the task fulfillment guarantees are obtained at runtime, rather than at the time of synthesis.
Synthesis of provably-correct controllers for a complex vehicle in the presence of uncertainty is
treated in [CB12]. The approach takes into account uncertainty bounds on the evolution of tra-
jectories over time, however a challenge is in the application to reactive task specifications under
indefinite execution durations. In the work of [FLP06], an automated framework is introduced for
translating the behaviors of a high-level controller into low-level continuous controller specifica-
tions. The possibility exists to use such specifications in the design of nonlinear motion planners.
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1.1 Problem Statement

In this paper, we address the following two questions. Given a high-level reactive mission plan
(a control strategy consisting of deterministic region transitions that satisfy a user-defined mission
specification), a robot model, and a workspace, can we design a set of low-level controllers that
guarantee satisfaction of the task in a dynamic environment? If so, what is the set of allowable
robot configurations for which these guarantees hold?

To be precise, we are given a deterministic finite-state machine (FSM), the nonlinear differential
equations of the robot, and a representation of the robot’s workspace. The FSM represents a control
strategy synthesized from a high-level mission specification using, e.g., the approach described
in [BJP+12]. The remaining problem - the focus of this paper - is devising a synthesis method that
automatically generates a collection of low-level atomic controllers (if any exist) to realize each
of the transitions in the FSM. In contrast to receding-horizon controllers (e.g. [WTM10, UMB13])
that are computationally expensive to implement on resource-constrained robots, the approach
we adopt is based on a set of switched state-feedback controllers that are all precomputed of-
fline. Thus, we aim for an efficient implementation at the expense of a slightly larger offline
computational load compared to existing approaches. We work directly with coarsely-partitioned
workspaces rather than synthesize controllers on a grid as in [LOTM13]. This is to alleviate the
approximations needed to generate discrete abstractions and the complexity issues as workspaces
are scaled larger.

The main contributions of this work are as follows. First, building from the notion of sequential
composition introduced in [BRK99, NP12], we define a new composition property, which we call
reactive composition, to assure that the derived controllers produce continuous trajectories which
guarantee the reactive behaviors of the FSM. That is, if the environment changes part-way through
a transition, the robot must be able to correctly switch to a different transition. We do this by cre-
ating a set of constraints for the construction of low-level controllers. This part of the work is
inspired by the general approach in [FLP06], however, in our work we extend controller specifica-
tions to encompass nonlinear robot models satisfying high-level reactive tasks. Another contribu-
tion of our work is an algorithm for synthesizing controllers that adhere to the reactive composi-
tion properties for the given task. The algorithm takes as an input a high-level controller with reac-
tive behaviors, and tries to automatically synthesize a library of low-level (atomic) controllers that
are guaranteed to satisfy these behaviors. To the authors’ knowledge, ours is the first attempt at
designing verified controllers for reactive tasks. Finally, we contribute a sample-based method for
computing controllers that implement each specific transition in the high-level controller, avoid-
ing any unintended behaviors. We adapt the invariant funnels method in [TMTR10,MT12], which
takes advantage of powerful numerical optimization techniques to produce a set of verifiably-safe
atomic controllers. We introduce a new set of constraints in order to enforce reactive composition
while preventing any robot behaviors prohibited by the high-level controller.

In the authors’ preliminary version of this work, [DKG13], we introduced the concept of re-
active composition, developed a constructive algorithm to ensure this property, and presented
preliminary simulation results. This paper serves to build upon that work by detailing the pre-
cise technical conditions upon which reactively composable reachable sets should be constructed.
Also, we explain the numerical method we use to compute atomic controllers, in particular our
approach for incorporating the necessary invariance conditions for the reactive setting. We fur-
thermore provide more illustrative examples in more complex environment settings.

We motivate the work through an example.
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Figure 1: Workspace and FSM for Example 1. In (a), a 2-D environment is shown, along with a
set of trajectories: one that does not satisfy the controller (solid) and one that does (dashed). The
•’s indicate when S blocked turns from False to True. In (b), the number designates the state; the
name in parenthesis denotes the region associated with that state. For each transition, the truth
values for the S blocked sensor are given; unlabeled transitions imply that S blocked can take on
any value.

Example 1. Consider an autonomous delivery robot, modeled as fixed-wing aircraft, operating in a dense
urban environment in Fig. 1a. The robot must continually deliver items between the store (S) and the
restaurant (R) by visiting them infinitely often. If the plane is in O and en route to S but it senses that store
is blocked, then it must re-route to the charging station C (without entering S). We adopt the synthesis
approach in [BJP+12] to construct the FSM shown in Fig. 1b.

Our goal is to construct feedback controllers that guarantee the sequence of motions of the FSM
like the one in Fig. 1b using, in this case, a fixed wing airplane model and the workspace in Fig.
1a. This task is a reactive one because the behavior changes depending on whether or not the store
is “blocked.” If the robot starts in S and S blocked stays False forever, the robot should follow
the sequence of regions SOROS . . . indefinitely; if S blocked becomes True, then it may follow
the sequence SOROCC . . ., i.e. the robot must go to C and stay there once it has visited R. In the
continuous domain, there may be instances where the robot may fail this task. To see this, consider
the solid-line trajectory pictured in Fig. 1a, where the plane moves counterclockwise starting with
S blocked = False. If the robot senses S blocked = True at the •, it may be unable to avoid hitting
S, and the task would fail. On the other hand, a clockwise trajectory (the dotted line in Fig. 1a),
is likely to succeed in this workspace. In general, it is possible that S blocked may toggle between
True and False at any point in the robot’s continuous trajectory, and so the robot must always
be in a configuration where it can make any legal transition. If, for a different workspace, such
controllers are found not to exist for the given platform, then the specified task may may not be
suitable for that robot.

1.2 Paper Outline

In the next section, we introduce the reader to relevant background concepts for our atomic con-
troller design approach. In Section 3, we introduce our approach to solving the problem and
outline an algorithm for automatic controller synthesis. The trajectory-based approach used for
computing verified controllers is presented in Section 4, and the execution of the controllers in
Section 5. We then present simulations of tasks performed by different robots in Section 6. The
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paper concludes in Section 7 with a summary and discussion.

2 Preliminaries

2.1 Robot and Environment Abstractions

Similar to the implementations in [KGFP09], we define an abstraction as a partitioning of the robot
system and the environment in which it is operating. In particular, we partition the continuous
map M ⊂ Rnw into M disjoint proposition-preserving map regions Mi, each associated with a
label ri, where nw is the dimension of the workspace. In a planar environment, for example, the
workspace is made up of two-dimensional polygons, some of which may represent holes in the
map. We also assume that the robot can travel between any adjacent regions.

In addition to the workspace, sensor and action values are discretized such that they may be
effectively replaced by a set of Boolean propositions. Discretization is achieved by dividing the
continuous space into a finite number of equivalence classes and assigning unique propositions to
each class [KGFP09]. In this paper, we assume that sensors and actions are binary. Here sensors
refer to events external to the robot (detection of a person, non-detection of a person), whereas
actions refer to discrete robot functions (pick up, drop). We define X as a set of environment propo-
sitions, collecting sensor propositions, and Y as a set of system propositions, collecting robot action
propositions and region propositions. Define the set R = ∪iri ⊆ Y as the subset of Y correspond-
ing to regions.

2.2 Controller Finite-State Machine

High-level controllers synthesized from task specifications and abstractions [WTM10,KGFP09] are
assumed to be given in this work. The synthesized controller takes the form of a FSM A, defined
as a tuple A = (X ,Y, Q,Q0, δ), where:

• X and Y are proposition sets as defined in Section 2.1.

• Q ⊂ N is a set of discrete states.

• Q0 ⊆ Q is a set of initial states.

• δ : Q× 2X → Q is a deterministic transition relation, mapping states and subset of environ-
ment propositions to successor states.

We introduce the following additional definitions. Define γR : Q → R as a state labeling
function assigning to each state the region label for that state, ri. Define the operator R : Q → Rn
as a mapping that associates with each q ∈ Q the subset Xq = R(q) of the free configuration space
X , where Xq corresponds to an n-D polytope labeled with γR(q). For example, a nonholonomic
planar mobile robot with X ⊂ SE(2) would use 3-D polytopes for Xq ; Xq for higher-dimensional
systems would be polytopes of appropriate dimension. We also define ∆ to be the collection of
state-pairs corresponding to each transition, namely ∆ = {(q, q′) ∈ Q2 | ∃z ∈ 2X . δ(q, z) = q′}. In
this paper, we assume that actions other than locomotion are instantaneous.

For some sequencew(0)w(1)w(2) . . .,w(i) ∈ 2X , i = 0, 1, 2, . . ., denote a run ofA as q(0)q(1)q(2) . . .,
with q(i + 1) = δ(q(i), w(i)). We call the sequence w(0)γR(q(0))w(1)γR(q(1)) . . . an execution trace
of A.
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2.3 Continuous Dynamics and Operations

In this paper, we consider systems of the form

ẋ = f(x, u, d), x(0) ∈ S, d ∈ D, u ∈ U (1)

where we are given a state vector x ∈ X ⊆ Rn, a control vector u ∈ U ⊂ Rm, a vector of unknown
disturbances d ∈ D ⊆ Rnd , and a set of initial states S. f is considered to be a smooth, continuous
vector field with respect to its arguments.

Under the action of a full-state feedback control law u(t) = κ(x(t), t), let ẋ = f̂(x, d) represent
the closed-loop system for (1) under κ(x(t), t). Given a concrete start state x(0) ∈ S and a time
horizon T > 0 (a free parameter that will be discussed in Section 3.1), denote ξT : [0, T ] → X

as a continuous finite-time trajectory of states under f̂ , µT : [0, T ] → U as a trajectory of control
inputs, and ξdT : [0, T ] → D as a trajectory of disturbances. Say we are given a sequence of time
indices, t ∈ {0, . . . , T}; then, we can represent the continuous trajectory as a sequence of states
x = {ξ(τ)}τ∈t, and a sequence of control inputs u = {µ(τ)}τ∈t.

Given a smooth function V (x, t), some ρ(t) > 0, and some T , we define the ρ-sub-level set as

`(ρ(t), t) = {x | V (x, t) ≤ ρ(t)}, ∀t ∈ [0, T ].

Let Xi, Xj ⊂ X be regions in the configuration space where Xi ∩ Xj 6= ∅ (the regions are
adjacent). Define an atomic controller κij as a controller that steers f(x, u, d) from Xi to Xj without
leaving Xi ∪Xj under all possible disturbances. Formally, an atomic controller κij exists iff there
exists some initial state ξT (0) ∈ Xi and some relative final time Tij such that ξT (Tij) ∈ Xj and
ξT (t) ∈ Xi ∪ Xj for all ξdT (t), t ∈ [0, Tij ]. We leave Tij as a free parameter to be chosen by the
algorithm, as will be discussed subsequently. We refer to trajectories driven by the action of an
atomic controller as atomic trajectories.

Lastly, given Xi, Xj ⊂ X , define a reach tube Lij : [0, Tij ] → Xi ∪ Xj as the set of trajectories
in which the controlled system remains for t ∈ [0, Tij ] under the action of a feedback controller.
Formally, suppose that we define some initial set Sij and some atomic control law κij , then Lij =
{ξT (t) | ξT (0) ∈ Sij ,∀ξdT (t), t ∈ [0, Tij ]}. We write Lij(t) to denote a slice of the reach tube Lij
evaluated at time t. In the following, we abuse notation and write, for example, Xi∪Lij to express
the union of Xi and the set covered by the reach tube (in place of Xi ∪k Lij(tk)).

3 Controller Synthesis Approach

To lay the foundation for our approach, in this section we introduce different classes of atomic
controllers and the technical conditions that allow us to guarantee behaviors in the high-level
controller. Lastly, we describe an algorithm which takes as its input the FSM and returns a library
of atomic controllers that guarantee the continuous executions of the FSM at runtime.

3.1 Composition Strategies

Define Iiout = {k ∈ N | (qi, qk) ∈ ∆} as the index set of all successor states for state qi (e.g. for
state 4 in Fig. 1b, I4out = {1, 5}), and let Iout = {Iiout}qi∈Q. As defined by [BRK99], for a given
set of atomic controllers to be sequentially composable, we require goal sets of the reach tubes to be
contained within the domain of successor reach tubes. Formally:
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Figure 2: Illustration of reactive composition. (a) shows a reach tube from R1 to R2 and possible
trajectories. (b) shows a reach tube from R1 to R3 . Along any given trajectory leading to R2 (blue)
in L12 ∩ L13, there exist L13 trajectories (red dashed) leading to R3 also in L12 ∩ L13.

Definition 1 (Sequential Composition [BRK99]). Let Lij(t) denote the slice of Lij at time t. For Lij to
be sequential composable for each pair in ∆ implies that Lij(Tij) ⊆ Ljk for all k ∈ Ijout.

For reactive tasks, the underlying conditions for sequential composition do not capture the
possibility that the robot might need to change its motion part-way during a trajectory in response
to some event. Consider again Example 1 and the two trajectories pictured in Fig. 1a. When the
robot is in O with S blocked = False, and moving towards S, both trajectories may in fact satisfy
the sequential composition property if atomic controllers exist for transitions between R and O
and O and S. However, if S blocked turns True during the execution, the robot must already be
in a state where it may access C without first entering S (a violation of the specification). The
configurations where S is reachable from O must also be the set of configurations where C is
reachable from O. We introduce a constraint called reactive composition to deal with co-reachability
of successor regions.

Definition 2 (Reactive Composition). Let X̄i ⊂ X denote the set of states such that, for all qi ∈ Q, there
exists a trajectory from qi to any qk, k ∈ Iiout, i.e. X̄i = ∩k∈IioutLik. A given reach tube Lij is reactively
composable with respect to A if, for (qi, qj) ∈ ∆, for all state trajectories ξT ∈ Lij ⇒ ξT ∈ X̄i ∪ X̄j .

Reactive composability is illustrated in the 2-D scenario in Fig. 2b, where the solid blue trajec-
tory shown exiting regionR1 (corresponding to state 1) and enteringR2 (state 2) is both contained
completely within its own reach tube (shaded blue) and the reach tube (shaded red) for trajectories
leading to R3 (state 3). Note that T12 and T13 signify the times beyond which all trajectories in L12

and L13 have reached their respective goal regions. As discussed next, we fulfill this property by
imposing additional constraints on the reach tubes we generate.

3.2 Classes of Atomic Controllers

We now introduce two types of atomic controllers for constructing reactively composable con-
trollers, and describe the constraints we apply in each case. Transition controllers κij refer to those
which invoke a transition between adjacent regions. Inward-facing controllers κci are used to maxi-
mize coverage of the region. Respectively, the reach tubes for κij and κci are Lij and Lci .
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3.2.1 Transition Reach Tubes, Lij
Consider a pair (qi, qj) ∈ ∆. When we construct reach tubes for this transition, we want it to
satisfy the current transition in the context of all possible subsequent transitions, that is, satisfy the
reactive composition requirement. To this end, we introduce the following three conditions.

1. Trajectories must be atomic with respect to the reactively composable set X̄i ∪ X̄j : we want
trajectories to start in the set R(qi) and progress to R(qj) while remaining in an invariant
Invij (defined in Section 3.2.2). For now, we apply definition 2 by choosing Invij = X̄i ∪ X̄j .

2. Trajectories must reach a goal set Gij ⊆ Xj ; formally, ξT (Tij) ∈ Gij after some time Tij has
elapsed relative to the start of the trajectory. We require Gij , whose precise definition will
become clear in Section 3.2.2, in order for the reach tube to be sequentially composable with
reach tubes for successor states from qj . For now, we will assume Gij to be X̄j .

3. To prevent the robot from re-entering a region Xi once it has entered Xj for Xi 6= Xj , the
trajectories need to be invariant in finite time to the set Xj . That is, for some τ ∈ [0, Tij ],

ξT (τ) ∈ ∂Xj ⇒ ξT (t) ∈ Xj , τ < t ≤ Tij

where we denote ∂Xj to mean the boundary of the set Xj .

To devise a certificate for the third condition, we can draw from region-of-attraction analysis
[Kha02], as follows. Let V : Rn×[0, Tij ]→ R be a smooth differentiable function with V (ξT (t), t) =
0 and V (x, t) > 0, x 6= ξT (t). We further restrict V (x, t) to be bounded from below and above by
class-K functions for all t ∈ R+. [Kha02]1 We therefore want to ensure that the level set ∂`(ρ(t), t) =
{x | V (x, t) = ρ(t)} satisfies V̇ (x, t) = d

dtV (x, t) < 0 on {x | x ∈ ∂`(ρ(t), t)∩Xj}. Put in terms of the
closed-loop system f̂ij(·, ·), the third condition can be reduced to the easier problem of restricting
ρ(t), the size of the attraction region, such that it satisfies:

V̇ (x, t) =
∂

∂x
V (x = ξT (t), t) f̂ij(ξT (t), d) +

∂

∂t
V (ξT (t), t) < 0, ξT (t) ∈ ∂Xj ∪ `(ρ(t), t) 6= ∅,

∀d ∈ D.

Intuitively, this statement requires that the system flow toward the successor region only on that
segment of the region boundary which is also in the computed region of attraction.

We can satisfy these conditions by simultaneously imposing constraints on the construction of
Lij(t). Respectively, these constraints are:

Lij(0) ∩ Sij 6= ∅, (2)
Lij(t) ⊆ Invij , ∀t ∈ [0, Tij ], (3)
Lij(Tij) ⊆ Gij , (4)

V̇ (x, t) < 0, ∀x ∈ Lij(t) ∩ ∂Xj 6= ∅, ∀d ∈ D, ∀t ∈ [0, Tij ]. (5)

where condition (2) assures that Lij has a nonempty intersection with the start set. Note that when
Xi = Xj , condition (5) can be dropped, and condition (3), the set inclusion Invij is merely X̄i.

1In Section 4, we will be choosing V (x, t) as a quadratic that satisfies these conditions.
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3.2.2 Extending Controller Coverage: Inward-Facing Reach Tubes, Lci
Although in principle it is possible to employ transition controllers to synthesize atomic controllers
for a given FSM, in practice, there are cases where it is impossible to find reactively composable
sets which are not spatially disconnected, as required to satisfy (3). This can happen whenever
the computed reach tubes are small compared with the region; for example, when constructing
controllers in long corridors or regions with a large number of obstacles. In similar rationale to the
techniques in [TMTR10, DRS11] that employ a maximization step to widen the basin of attraction
to a goal region, we introduce another type of reach tube, inward-facing reach tubes, to achieve the
needed spatial coverage.

Consider a state qi ∈ Q. Our goal is to generate atomic controllers that admit finite-time trajec-
tories and satisfy the following two conditions:

1. The region Xi must be invariant; that is, trajectories starting within some subset of Xi must
remain in Xi.

2. Trajectories need to reach a goal set Gci ⊆ Xi; that is, ξT (Ti) ∈ Gci .

The above statements require that trajectories are both invariant to the region and are sequen-
tially composable with respect to Gci . This leads immediately to the following reach tube condi-
tions:

Lci (t) ⊆ Xi, ∀t ∈ [0, Ti], (6)
Lci (Ti) ⊆ Gci . (7)

Notice that, by adding in the inward-facing controllers, we are able to expand the reactively-
composable invariant in (3) (with a slight abuse of terminology) as Invij = (X̄i ∪ Lci ) ∪ (X̄j ∪ Lcj),
and likewise also expand the goal set in (4) as Gij = X̄j ∪ Lcj . As will be shown in the next
section, this additional set of controllers will help our iterative approach for synthesizing atomic
controllers. The larger the sets are, the greater the likelihood of finding controllers that satisfy the
specification.

3.3 Atomic Controller Synthesis Algorithm

Using the composition strategies and the two types of atomic controllers, we now outline our
process for constructing atomic controllers in Algorithm 1. The basic procedure is as follows.
First, the set of all transitions ∆ are extracted from FSM A (AutomTransitions in line 1). Next,
atomic controllers and their reach tubes are computed for each edge in ∆ in lines 7–17. Reach
tubes are computed iteratively until either all possible configurations within R(qi) for each qi are
enclosed (to within a desired tolerance) or until it is determined that coverage is not possible, i.e.
it is not possible to compute Lij for some (qi, qj) ∈ ∆. The algorithm terminates successfully if
reach tubes are found for each edge (line 20). If not, then the reach tube computations are revised
by repeating lines 6–22 to ensure they are reactively composable in the sense of Definition 2. That
is, each reach tube associated with either an incoming or outgoing transition from qi is checked
whether or not it lies within the set of states for which all successor regions of qi are reachable.
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Algorithm 1:
(L, κ)← ConstructControllers(A,R, f, ε,N)

Input: Synthesized FSM A with region mappings R(·), closed-loop robot dynamics f(·),
coverage metric ε, and number of iterations N for coverage

Output: A set of funnels L and controllers κ guaranteeing the execution of A
1 (∆, Iout)← AutomTransitions(A)
2 for (qi, qj) ∈ ∆ do
3 Lij ← Rn
4 end
5 Lci ← ∅, κci ← ∅ ∀qi ∈ Q
6 while True do
7 for (qi, qj) ∈ ∆ do
8 Sij ← ∩k∈IioutLik ∩R(qi)

9 Gij ←
(
∩k∈IjoutLjk ∩R(qj)

)
∪ Lcj

10 (Lij , κij)← GetReachTube(Sij , Gij , Sij ∪ Lci ∪Gij , f, ε,N)
11 if Lij = ∅ then
12 return ∅ // No controller exists

13 end
14 Sci ← R(qi)\ ∩k∈Iiout Lik
15 Gci ← ∩k∈IioutLik ∩R(qi)

16 (Lci , κci )← GetReachTube(Sci , G
c
i , R(qi), f, ε,N)

17 end

18 if ∀(qi, qj) ∈ ∆ :
[
(Lij ∩R(qi)) ⊆

((
∩k∈IioutLik ∩R(qi)

)
∪ Lci

)]
∧[

(Lij ∩R(qj)) ⊆
((
∩k∈IjoutLjk ∩R(qj)

)
∪ Lcj

)]
then

19 L ← (∪i,jLij ∪i Lci ), κ← (∪i,jκij ∪i κci )
20 return L, κ
21 end
22 end

3.3.1 Computing Lij
Fig. 3 illustrates, through an example, the computation steps in Algorithm 1. In the first iteration
of lines 7–13, reach tubes are computed for each edge (qi, qj) ∈ ∆. The set Lij is initialized as the
whole configuration space, while the goal set Gij is the region R(qj) and the invariant Invij is the
region R(qi) ∪ R(qj). In Fig. 3a, reach tubes are computed for the two transitions (q1, q2) (blue
region) and (q1, q3) (green region), and the intersection of the two is taken (yellow region). Intu-
itively, this intersection (see Fig. 3b) defines the set of states from which any region of successor
states can be reached (by using either controller κ12 or κ13). The process repeats for the remaining
edges in the FSM. The algorithm immediately returns failure if an edge is encountered where a
reach tube cannot be constructed (lines 11–13).
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(a) (b) (c)

(d) (e) (f)

Figure 3: Illustration of the reach tube computation steps, assuming symmetric transitions be-
tween each adjoining region. In (a), a pair of transition reach tubes L12 and L13 are computed
for q1 , the intersection of which (yellow) defines the new start set for the next iteration (see lines
7–13 in Algorithm 1). In (b), the same is done for the remaining states q2 and q3. Next, in (c),
inward reach tubes Lci (red) are generated for each region, (see lines 14–17 in Algorithm 1). This
expanded region defines the invariant for the next iteration. In (d)–(f), the process in lines 7–17 is
again repeated for the new start sets and invariants, and terminates at (f) since all reach tubes lie
inside the regions bounded by the dotted borders (e.g. for q1 this is R(q1) ∩ ((L12 ∩ L13) ∪ Lc1)).

3.3.2 Computing Lci
In order to expand the size of reactively composable regions, we create inward reach tubes in
lines 14–17 to provide controllers that steer the robot to a configuration from which it can take
a transition. The collection of Lij from the current iteration produce the start sets Sci and the
sequentially composable goal sets Gci for each qi. The set Sci in line 14 is the set R(qj) minus the
intersection of all transition reach tubes from that region (the white portions in Fig. 3b), while the
set Gci in line 15 is found from Definition 1 (the yellow portions in Fig. 3b).

In Fig. 3c, the red regions enclosed by the dashed lines, Lci , denote where controllers were
found to drive the system into the yellow region. We seek transition reach tubes that are contained
within the union of the red and yellow regions in Fig. 3c.

3.3.3 Further Iterations

After a single iteration, if the sequentially-composable transition reach tubes are not reactively
composable, the algorithm continues alternately computing Lij and Lci until they are reactively
composable for all Lij . To test if Lij is reactively composable, we need to determine if Lij is con-
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tained within a subset of states where outgoing transitions from qi or qj are possible, i.e. satisfies
(Lij ∩R(qα)) ⊆

((
∩k∈IαoutLαk ∩R(qα)

)
∪ Lcα

)
for α ∈ {i, j}. As such, the termination criterion

in line 18 enforces Definition 2, by requiring that transition reach tubes must either lie within an
inward reach tube or the sets where any successor state is reachable. An additional iteration of the
algorithm is shown pictorially in the bottom row of Fig. 3.

In any given iteration, the sets Sij , Gij , and Invij for the ijth edge are updated by the Lij
and Lci from the previous iteration. Fig. 3d shows the second iteration of lines 7–13, where new
transition reach tubes for a are computed (L12 and L13), constrained to stay within the red and
yellow regions for q1, q2, and q3. After intersections are taken (yellow regions in Fig. 3e), the reach
tubes from the previous iteration are replaced with a new set of inward reach tubes computed in
lines 14–17. Fig. 3f illustrates this last step, and is an example of a situation where the algorithm
successfully terminates because the reactive composability criterion in line 18 is fulfilled. If the
algorithm terminates successfully, a library of reach tubes L is returned in lines 19–20 along with
a library of controllers C.

4 Computing Atomic Controllers

We now present an implementation for constructing reach tubes in possibly cluttered workspaces.
Probabilistic planning approaches, such as rapidly-exploring random trees [LaV06], have gained
widespread use in various path planning applications. In such methods, exploration of the con-
figuration space is probabilistically complete; that is, the probability of solving a motion planning
problem for a given initial configuration improves with the number of samples. Recent techniques
such as the Invariant Funnels technique in [TMTR10] uses sampled trajectories to compute verified
controllers in a randomized tree structure. We adopt this framework to construct, in a piecewise
manner, the reach tubes in Algorithm 1. For each computed sample trajectory, we also compute
a region of invariance (funnel) about the sample trajectory. The workflow for constructing each
funnel is as follows [TMTR10, MT12]: (1) generate a nominal trajectory connecting a given start-
ing configuration and goal configuration, (2) design a local feedback controller to stabilize about
the trajectory, and (3) solve a sum-of-squares program for the trajectory/controller pair to find the
maximally-permissive funnel for this trajectory.

Throughout this section, let us denote m as the index of a sample trajectory associated with
some reach tube L. Let `m and κm denote, respectively, a funnel and controller associated with
this trajectory. Each reach tube L is constructed from a collection of funnels such that L = ∪m`m.
Likewise, each atomic controller κ is constructed from a collection of local controllers such that
κ = ∪mκm.

4.1 Trajectory Generation

In our work, we solve a two-point planning problem to generate each sample trajectory, where
we attempt to connect a point in S with a goal point in G. For differentially-flat platforms such
as nonholonomic wheeled mobile robots, we apply feedback linearization [OLLV02]: a nonlinear
transformation on the robot’s inputs yielding new pseudo-inputs that are derivatives of the robot’s
Cartesian coordinates. For static feedback linearization the pseudo-inputs are upseudo = [ẋ, ẏ]T .
We can then generate an instantaneous steering command by choosing this command to be the
Cartesian vector displacement between the current robot configuration and the desired goal con-

12



figuration, i.e. upseudo = [x− xgoal, y − ygoal]T . Using this strategy, we make use of standard ODE
solvers to solve the planning problem.

We discard those trajectories that do not satisfy the constraints for the current reach tube (as
detailed in Section 3.2); those that are accepted are represented by the pair (ξmT , µ

m
T ). For systems

which are not feedback linearizable (e.g. 3-D Cartesian robot arms), trajectories can still be gener-
ated using nonlinear trajectory optimization methods [Bet09], or any number of motion planning
tools.

4.2 Trajectory-Stabilizing Controllers

We apply local controllers to correct for deviations from the nominal sample trajectory due to
disturbances or initialization errors. In this work, we use a linear quadratic regulator (LQR)
approach [Kir76] applied to a linearized version of the system (1) based on the mth trajectory
(ξmT , µ

m
T ). LQR controllers are generated using the metric quantities x̄(t) = x(t) − ξmT (t) and

ū(t) = u(t)−µmT (t) using a cost function of the form
∫ T
0

(x̄TQ1x̄+ ūTQ2ū)dt+ x̄TST x̄. The matrices
Q1, Q2, and ST are design parameters that can be adjusted to tailor the shape of the funnels. In
our case, we are interested in funnels with wide mouths (initial sets) and small tails (goal sets), so
we typically choose ST one order of magnitude larger than Q2, while the values in Q1 are chosen
to remain within the same relative order as Q2. The control gain Km(t) is computed based on the
matrix solution Sm(t) to a Riccati equation.

4.3 Invariant Funnels

Given the nominal trajectory (ξmT , µ
m
T ) and controller Km(t), the task is to find a maximally-

permissive funnel that satisfies the conditions in Section 3.2. The matrix solution to the Ric-
cati equation from the controller generation step immediately parameterizes quadratic Lyapunov
functions V m(x, t) = x̄TSm(t)x̄. Working with quadratic functions averts the problem of searching
exhaustively over all classes of Lyapunov function candidates. Given that quadratic representa-
tions in general carry only local guarantees, the task is equivalent to finding a maximal ρm(t) such
that the ρm(t)-sub-level sets of these Lyapunov functions `m(ρm(t), t) (represented as ellipsoids)
satisfy the finite-time invariance conditions explained in [TMTR10], while also adhering to the
conditions of Section 3.2.

To explain our approach in the context of [TMTR10, MT12], we present the most general prob-
lem statement for solving for transition reach tubes using the system (1), then remark on which
parts of the problem are changed when adapting the problem for inward-facing reach tubes. Com-
puting a transition reach tube involves the following objective:

max ρm(t), t ∈ [0, Tm] (8)

s.t. ρm(t) ≥ 0, ∀t ∈ [0, Tm], (9)

V̇ m(x, t) ≤ ρ̇m(t), ∀t ∈ [0, Tm],∀x ∈ {x | V m(x, t) = ρm(t)},∀d ∈ D (10)

V̇ m(x, t) ≤ 0, ∀t ∈ [0, Tm],∀x ∈ {x | V m(x, t) = ρm(t)} ∩Xj , (11)
`m(ρm(t), t) = {x | V m(x, t) ≤ ρm(t)} ⊆ Inv, ∀t ∈ [0, Tm], (12)
`m(ρm(Tm), Tm) = {x | V m(x, Tm) ≤ ρm(Tm)} ⊆ G (13)
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where Xj is the polyhedral set corresponding to the successor state qj . Constraints (9) and (10)
enforce trajectory invariance to the funnel and positive-semidefiniteness of the level set. The con-
straint (11) is a re-statement of (5) in the funnel setting. Likewise, (12) and (13) are, respectively,
re-statements of the invariance (3) and goal (4) conditions. Condition (2) is not included here be-
cause satisfaction of the start set is implicitly satisfied by sampling the initial state of the trajectory
from within S. It is worth pointing out that the difference between our formulation and the one
in [MT12] is precisely the addition of conditions (11)–(13).

Oftentimes, we find there are unknown disturbances (wind gusts pushing the robot in one
direction or another), causing unexpected motions and collisions with obstacles. When we have
such disturbances affecting the dynamics, we require that the invariance condition in (9) to be true
for all d ∈ D.

When computing funnels for inward reach tubes, the inequality (11) is removed and the inclu-
sion (12) is replaced with the following:

`m(ρm(t), t) = {x | V m(x, t) ≤ ρm(t)} ⊆ Xi

to reflect the condition in (6).
When solving the optimization problem in (8) – (13) using numerical methods, we replace the

trajectory (ξT , κT ) with its discrete sequence (tm,κm,xm). We then express the closed-loop system
f̂(x, d) under the action of κm as being polynomial in its arguments x and d. We then transform
the problem (8)–(13) into a sum-of-squares program replacing the intervals [0, Tm] with tm and by
making the following substitutions:

Eq. (10) and (11):
−
(
∂
∂xV

m(x, t)f̂(t, x, 0) + ∂
∂tV

m(x, t) + λ1(x, t) (ρm − V m(x, t)) + λ2(x, t)Pj(x)
)

+ λ3(d, t)Pd(d)

is s.o.s., t ∈ tm,

λ1(x, t), λ2(x, t), λ3(x, t) are s.o.s., t ∈ tm,

(14)

Eq. (12):

 (V m(x, t)− ρm)− λ4(x, t)Pinv(x) is s.o.s., t ∈ tm \ Tm,
λ4(x, t) is s.o.s., t ∈ tm \ Tm,

(15)

Eq. (13):

 (V m(x, Tm)− ρm)− λ5(x)PG(x) is s.o.s.,

λ5(x) is s.o.s..
(16)

Where λi(x, t), i = 1, . . . , 5 are positive-definite polynomial multipliers and Pj(x), Pinv(x),PG(x),
and Pd(d) are all polynomials used in parameterizing the sets Xj , Inv, G, and D as zero-sub-level
sets. In particular,

Xj = {x | Pj(x) ≤ 0}, Inv = {x | Pinv(x) ≤ 0},
G = {x | PG(x) ≤ 0}, D = {d | Pd(d) ≤ 0}.

The sum-of-squares program is solved via the MATLAB toolboxes SPOT [Meg] and Ellipsoids
[KV06].
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4.4 Algorithm

The steps for generating reach tubes are encapsulated in an algorithm GetReachTube, outlined
in Algorithm 2. The process is iterated up toN times. GetInit on line 4 randomly picks an initial
point in the S. The function GetFinal on line 5 picks a final point inside G, seeking the centroid
of the region if the goal set is a polygon and randomly if it is defined by reach tubes. With the
boundary conditions defined, the algorithm next invokes SimTrajectory to generate a feasible
trajectory and a controller based on the LQR design. Given a tm, the function returns a controller
library κm as the sequence (µm,Km), where µm = {µm(t)}t∈tm and Km = {Km(t)}t∈tm . A
trajectory is deemed infeasible if it ever leaves the invariant for the current transition. If this
happens, new final points and trajectories are generated until it is unobstructed. If a feasible
trajectory is found, ComputeFunnels computes the funnels according to the procedure in Section
4.3. Lines 9–12 check if a feasible funnel is found. If so, it is appended to the existing library of
funnels.

Algorithm 2:
(L, κ)← GetReachTube(S,G, Inv, f, ε,N)

Input: A start set S, a goal set G, an invariant set Inv, along with f, ε,N
Output: A set of reach tubes L and controllers κ

1 m← 0, L ← ∅, κ← ∅
2 while V ol(L ∩ S) < (1− ε)V ol(S) ∧m < N do
3 m← m+ 1
4 xi ← GetInit(S)

5 xf ← GetFinal(G)

6 (tm,xm,κm)← SimTrajectory(f, xi, xf , Inv)
7 if xm 6= ∅ then
8 `m ← ComputeFunnel(tm,xm, cm, G, Inv)
9 if `m 6= ∅ then

10 L ← L ∪ `m
11 κ← κ ∪ (tm,xm,κm)

12 end
13 end
14 end
15 return L, κ

Note that perfect coverage of a region is often not possible when the boundaries of a region
are included as constraints. We allow for incomplete coverage by introducing a coverage metric
ε ∈ [0, 1] and declare the set covered if V ol(L ∩ S) ≥ (1 − ε)V ol(S) or if m = N where V ol is the
volume of a particular set defined in Rn, m is the current funnel iterate, and N is an integer. Since
the set S is represented as the intersections of unions of ellipsoids, the volume is computed in an
approximate manner with the aid of the Ellipsoids toolbox [KV06]. The former condition asserts
that coverage terminates if the volume of the reach tube L within the start set is a significant
enough fraction of start set. If the coverage is not achieved before N iterations, then there may be
transitions from region γR(qi) that are not reachable from some parts of the state space R(qi) for
that region. Hence, the method is sound, but not complete.

Another implementation issue arises from the curvature of the ellipsoidal level sets. At the
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boundaries of polyhedral sets, coverage degenerates where the ellipsoid level sets meet the poly-
hedral region boundaries, sometimes causing difficulty when generating transition reach tubes.
We work around this issue by relaxing the interface between neighboring regions by some fixed
tolerance value εreg . This parameter allows regions to share territory by an amount defined by
this fixed distance. To more strictly enforce one of the two region boundaries, one can adjust the
shared boundary in the direction of one region or another. Although not explored in this work, it is
also possible to remove this shared boundary by altering our approach slightly to allow ellipsoidal
level sets to be expanded beyond region boundaries as long as the boundary itself is certified as
an invariant.

4.5 Complexity

Here we state the time complexity of our overall approach. The implementation in Algorithm 1
runs in time O(|Q|3). Put in terms of a set number of transitions |∆|, we can express this more
precisely as O(|∆||Q|). Algorithm 2 applies two semidefinite programs; one for solving the sums-
of-squares program and another for estimating the set volume. Both run in polynomial-time: the
sums-of-squares solver is polynomial in both the state dimension n and the size of the FSM |Q|,
while solver used for volume estimation is polynomial in n. In Section 6 we give more empir-
ical insight into the complexity of the approach as a whole by providing actual runtimes when
performing the computations for several example tasks.

5 Controller Execution

At runtime, low-level controllers are selected according to the current state of the robot and the
current values of the sensor propositions. The planner executes the controller associated with the
funnel associated with the current robot state (e.g. κmij if within `mij (t)). In order to adhere to
the transitions of the controller FSM as the system evolves, a new funnel is selected if one of three
events occur: (i) the end of a funnel is reached, (ii) a region transition is made and either an inward
funnel or a transition funnel for the next transition is reached, or (iii) an environment proposition
changes. Priority is always given to transition controllers κij over inward ones κci . That is, if the
robot is currently executing a controller in κci and the trajectory reaches a funnel in Lij , with rj
as the goal for that transition, the motion controller is switched from κci to κij . In Example 1,
consider the case when the robot is in state q4 with S blocked = False. At the current time step,
the robot is executing the controller κ34 and has just reached O. The next goal (S) is implemented
by switching controllers to κ41 if within the associated funnel. Otherwise, the planner will choose
κc4. If the trajectory is in more than one funnel, the execution paradigm operates deterministically
(the first funnel encountered in the library is always selected).

We now show that the algorithm, when executed using the runtime implementation described
above, produces trajectories that remain consistent with respect to the behaviors in the FSM. Define
ω : R+ → X as a possible environment proposition trajectory initialized at ω(0). Let q(0) be
the initial state, and ξq(0) be a disturbance-free continuous trajectory in Xq(0), with the robot’s
configuration initially ξq(0)(0). Let q(k), k > 0 be defined as follows. Initializing k = 0, τ0 = 0, we
increment k either when a time t = τk > 0 is reached for which ξq(k)(τk) ∈ ∂Xq(k) (the trajectory
reaches a boundary) or when δ(q(k), ω(τk)) = q(k) (a self-transition is already satisfied at time t =
τk under the environment input ω(τk)). Each time k is incremented, let ξq(k−1)(τk−1) = ξq(k)(τk−1)
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to ensure continuity of the trajectories and build a trajectory segment ξq(k)(t), t ∈ [τk−1, τk). To
avoid livelock, we assume that the environment does not change too fast by restricting ω(t), t ∈
[τk, τk+1) to only those input traces for which livelocking does not occur for all k ∈ N. Given any
such ω, we call the sequence σ = ω(0)R(q(0))ω(τ1)R(q(1)) . . . a reactive execution trace associated
with the continuous trajectory.

In the following proposition, we show that the continuous trajectories obtained by executing
the atomic controllers synthesized from Algorithm 1 yield reactive execution traces that enforce
the behaviors of the high-level controller.

Proposition 1. Consider a robot initialized within ∩k∈IioutLik ∪ L
c
i , qi ∈ Q0 ∧ (qi, ·) ∈ ∆. For all ω,

executing Algorithm 1 produces a reactive execution trace σ of the high-level controller A.

Proof. To show that σ produced by the execution is in fact an execution trace of A, we remark that
reach tubes are constructed from edges in ∆. For any (qi, qj) ∈ ∆, the robot will either be in Lik
for some k ∈ Iiout where conditions (3) and (4) hold true, or will be in Lci , where (6) and (7) hold
true. Once in Xj , the robot will not re-enter Xi as a consequence of (5). Therefore, the robot will
not exhibit additional behaviors not in A.

To show that the converse is true; that is, there exists a σ for every possible execution path
of A, it is only necessary to show that, for any state in ∩k∈IioutLik ∪ L

c
i , we can take any valid

transition from qi. By construction, the set ∩k∈IioutLik ∪ L
c
i is reactively composable, thus proving

completeness of the executions of A.

Note that in general possible successor regions can be far away from each other and so, we
cannot guarantee the behaviors of A for any arbitrary trajectory of environment propositions. For
example, consider again state q4 in Example 1. The environment is allowed to toggle S blocked
between True and False indefinitely when the robot is within O. In the continuous setting, this
would cause the robot to get trapped forever in q4, while in the FSM, there is no such livelock,
since this toggling does not appear in the discrete execution. This is due to the physical setting
in which robots operate and is a limitation of the abstraction, rather than the low-level controller
synthesis approach.

6 Simulations

In this section, we demonstrate the application of the method developed in this paper to three
examples. For these examples, we make use of a unicycle robot model consisting of three states,
governed by the kinematic relationship:

ẋr

ẏr

θ̇

 =


v cos θ

v sin θ

ω

 ,
where xr and yr are the Cartesian coordinates of the robot, θ is the orientation angle, and v and ω
are, respectively, the forward and angular velocity inputs to the system. In this work, we augment
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1 (r1)

2 (r2)

4 (r2)

3 (r3)

¬pursuer

pursuer

¬pursuer
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(b)

Figure 4: (a) Workspace for the “patrolling two regions” example. (b) FSM for the example. The
transitions are labeled with the truth value of the pursuer sensor; unlabeled transitions imply that
pursuer can take on any value.

the model by limiting ω such that

ω =


ωmax if u ≥ ωmax
ωmin if u ≤ ωmin
u otherwise

and v = vnom. The input u is governed by a feedback controller that steers the robot from some
initial configuration to the desired configuration. We adopt the parameter settings ωmin = −3,
ωmax = 3, and vnom = 2.

For each example, we perform computations using MATLAB on a standard 64-bit Windows
desktop machine, with an Intel Core i7 processor clocked at 3.40 GHz and 8 GB of RAM. To sim-
plify our implementation, when computing funnels we make sure to choose from a single ρm

regardless of the time index, so that ρ̇m = 0.

6.1 Patrolling Two Regions

Consider a unicycle robot moving in the 10m × 9m workspace shown in Figure 4a. The robot is
initially in r1 and must continually patrol r3 and r1. If the robot senses a pursuer, then it must
return to r1 (safe zone). The specification is implemented in the FSM shown in Figure 4b.

A library of reactively-composable controllers is generated. For this example, we set the cov-
erage metric ε = 0.2, the number of iterations N = 100, and the interface relaxation εreg = 0.2m.
Reach tubes L23 are generated in the first and second iterations for (r2, r3) and sample funnels are
shown in Figs. 5 and 6. Also shown are the θ-slices of the union of the inward reach tube and
transition reach tube Lc2 ∪ L21 (shown in red). In the first iteration, it is apparent that the funnel
spans a gap in the set of inward funnels and hence the controllers are not reactively composable.
If the controller drives the robot to this portion of the configuration space, the robot cannot change
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(a) (b)

Figure 5: (a) shows a transition funnel for the transition from r2 to r3 and a slice of the set where
r1 is reachable from r2 at θ = 1.35 (defined by Lc2 ∪ L21) after the first iteration of Algorithm 1. (b)
shows a 2-D view of the slice. In this iteration, the funnel is not reactively composable because the
portion in r2 is not confined to the red set. If the robot is outside of the red set when enroute to r3,
there are no controllers which can deliver it to r1 if it sees a pursuer.

direction if it senses a pursuer. We thus continue with another iteration of Algorithm 1. After
the second iteration, the revised funnel is reactively composable for all transitions and no further
iterations are necessary. The volumetric region coverage for each of the four states are shown in
Table 1. Here, volume fraction is defined as the ratio of the actual volume of the region polytope
R(qi) in (xr, yr, θ) and the subset of that polytope which contains ∩k∈IioutLik ∪ L

c
i .

Table 1: Fraction of (xr,yr,θ) coverage for each Xi associated with the FSM.

q1 q2 q3 q4

(r1) (r2) (r3) (r2)

0.5846 0.5976 0.5295 0.6171

Fig. 7a shows a sample trajectory of a robot starting in r1, in which a controller in κ12 is applied,
followed by a controller in κc2 and one in κ23. Part way through its motion to r3, the pursuer sensor
turns True, invoking the sequence κc2, κ21 to take the robot to r1. pursuer once again becomes
False prompting activation of a controller in κc2 followed by one in κ23. As can be seen, the robot
remains within the funnels and is able to satisfy the specification regardless of the environment as
it moves between regions. Fig. 7b shows a long-term trajectory starting at a given initial condition
in r1 ∩ ((L12 ∩L11)∪Lc1). The figure indicates that the controllers generated by our algorithm can
produce an infinite trajectory which is correct with respect to the infinite execution traces of A.

6.2 Pursuit-Evasion Game

Consider a game being played between a robot and an adversary, where the robot must repeatedly
visit the home and goal regions pictured in Fig. 9, while evading an adversary which visits each of
the three remaining regions infinitely often. Evasion is encoded by the requirement that the robot
should never enter the same region as the enemy. By assuming the enemy patrols its three regions,
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(a) (b)

Figure 6: (a) shows a transition funnel for the transition from r2 to r3 and a slice of the set where
r1 is reachable from r2 at θ = 1.05 (defined by Lc2 ∪ L21) after the second iteration of Algorithm 1.
(b) shows a 2-D view of the slice. The funnel is now reactively composable because the portion of
it which lies in r2 is now completely enclosed by the red set. The robot is therefore able to move to
r1 if it senses a pursuer anywhere along its path to r3.

(a) (b)

Figure 7: Closed-loop trajectory generated from an initial state in r1. (a) shows a set of control
laws are applied to implement the transitions (r1, r2) and (r2, r3), driving the robot from state 1
to state 2, then from state 2 to state 3 in Fig. 4b. 2-D projections of the active funnels are also
shown, the red corresponds to inward and green corresponds to transition. pursuer turns True

when at the location marked by the “+” sign. At this instant, another controller is invoked to
make the transition (r2, r1). pursuer turns False at the “×” location, and new control laws are
used to resume the transition (r2, r3). (b) shows an long-term path when the robot starts at the red
“�” in r1 and pursuer remains False throughout.
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Figure 8: FSM for the pursuit-evasion example. For simplicity, we label each edge by the value
the sensor proposition must take, and exclude labels for which the remaining input labels can be
inferred based on the assumptions on the enemy’s behavior. For example, the transition (q6, q7) is
labeled inR2; by mutual exclusion of the regions the enemy can occupy, when inR2 is True, inR1
and inR3 are False.

the robot cannot get trapped forever in the goal region. As a fairness condition, in the specification
we assume also that the enemy cannot enter the region the robot is currently in. The high-level
controller (Fig. 8) consists of eight states and 13 transitions. The sensor values inR1, inR2 and
inR3 correspond to the sensed location of the adversary.

Reach tubes are constructed for each of the 13 transitions. A subset of these (the highlighted
edges in Fig. 8) are shown in Fig. 9, showing the possible trajectories that the robot may follow
when transitioning between goal and r3 (denoted green), and when transitioning between r3 and
r1. Note that the goal–r3 funnels all deliver the robot to the left of goal. The reason for this is that
there are two possible transitions out of r3 (r1 and r2) depending on the location of the enemy. If
the robot invokes these reach tubes, it always exits the left-hand facet of the goal region, where
the robot is easily able to toggle between the goals r1 and r2 as the enemy toggles between those
regions. The gray trajectory in Fig. 9 illustrates this for the case when inR1 remains True. Without
reactive composition, a motion planner may cause the robot to exit goal via the top or bottom
facets. If the robot follows the hypothetical magenta trajectory in Fig. 9, if inR1 stays True when
in r3, the robot will have no other option but to enter r1 (violating the specification) because there
are neither any transition funnels L68 nor any inward funnels Lc6 in the area above the goal region.

6.3 Delivery in a Cluttered Environment

We next return to the example in Example 1. The task, once again, is to repeatedly deliver supplies
between region S and R, connected via O, and return to C if the store S is blocked. We apply two
models to fulfill this task: a model of the under-actuated unicycle and a model of a non-holonomic
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Figure 9: Transition funnels for L56 and L67 (green) in the pursuit-evasion example. Lc5 and Lc7 are
shaded blue and Lc6 is shaded red. Two hypothetical trajectories are shown; the one exiting the
top of goal is not reactively composable and hence always enters r4 regardless of the environment
when in r3, while the one exiting the left face of goal is reactively composable allowing the robot
to choose between entering r1 or r2.

car. The non-holonomic car is represented by the four-dimensional system:
ẋr

ẏr

θ̇

φ̇

 =


v cos θ

v sin θ

v
`r

tanφ

ω

 ,

where xr, yr, θ, v and ω are the same as for the unicycle, φ is the steering angle and `r is the axle
spacing, which we take to be `r = 0.5 m. In this car model, we have control of both forward
velocity v and steering rate ω, and impose no restrictions on their values.

We apply Algorithm 1 to this problem for a workspace similar to the one shown in Figure
1a. Because the central region (O) consists of a large area interspersed with several obstacles,
we forego attempting to cover the entirety of the region and instead seed inward controllers at
configurations where transition controllers already reside. We do this to aid composition; for
a given number of funnels, concentrating funnels together reduces gaps in the reactively- and
sequentially-composable sets. Rather than keeping the goal region the same for all inward funnels,
we attempt to increase coverage depth by permitting inward funnels to be sequentially composed
with one another. We do this by redefining the goal region to include the most recent inward
funnel each time one is computed. We limit the number of transition controllers to 20 and the
number of inward controllers to 100. With these parameters, each major iteration in the while
loop (lines 6–22) the MATLAB implementation took approximately 780 minutes to complete for
the unicycle robot and 1470 minutes for the car. For both models, we terminate after two major
loop iterations. We note that the method we introduce is intended as an offline verification and
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controller synthesis approach, and therefore the code and computer hardware implementations
were not optimized in this work.

As constructed, the controllers are able to handle infinite executions of the high-level controller
in Figure 1b. A partial sample trajectory for the unicycle robot starting in region S is shown in Fig-
ure 10. The controller coverage (projection of the inward and transition reach tubes onto xr, yr)
is indicated by the shaded regions in the map. In the first iteration of the synthesis algorithm,
transition funnels initially cover a large portion of region O. After the first iteration, sampling of
the funnel trajectories becomes more concentrated only in areas where reactive composition can
be met. In our case, this is in the central part of the region. A side benefit to the approach is that
the resulting controllers tend to yield efficient (non-circuitous) trajectories in the free configuration
space. Figure 11 shows the same scenario as Figure 10, except using the car robot. Similar to the
unicycle, the car robot is able to fulfill the transitions of the high-level controller. One of the differ-
ences is that the coverage area for the car is slightly smaller than the unicycle, which is primarily
due to the dynamics being restricted by nonholonomic constraints.

For both robot models, the trajectory remains within the verified reach tube for most of the tra-
jectory, but in a few cases the trajectory momentarily exits the reach tube. This is attributable to the
fact that we construct reach tubes based on an a polynomial approximation of the true dynamics.
We simulate the polynomial approximation (dashed trajectories) in Figures 10 and 11. For both
test cases, we have verified that the trajectories computed with the polynomial approximation do
in fact remain within the funnels; this observation is reflected in the figures. If a bound on the
divergence between the trajectories of the true system and its approximation can be found, we
can use this bound to guarantee correctness in the actual system by imposing a certain amount of
inflation on all obstacles and regions. We intend to address such approximation issues as future
work.

Figure 10: Partial sample trajectories of the unicycle robot (solid), and its polynomial approxima-
tion (dashed) for the delivery scenario in Example 1 . The robot pose is shown at uniform time
intervals, and the projection of the funnels appears as shaded fill areas. The red ◦ indicates the
rising edge of the S blocked sensor. Note the yellow circled portion of the true system trajectory,
indicating a place where it momentarily leaves the funnel.
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Figure 11: Partial sample trajectories of the non-holonomic car (solid), and its polynomial approx-
imation (dashed) for the delivery scenario in Example 1 . The robot pose is shown at uniform time
intervals, and the projection of the funnels appears as shaded fill areas. The red ◦ indicates the
rising edge of the S blocked sensor. Note the yellow circled portion of the true system trajectory,
indicating a place where it momentarily leaves the funnel.

7 Conclusion

In this paper, a method is presented for synthesizing controllers in the continuous domain based
on a discrete controller derived from a high-level reactive specification. The central contribution
of this paper is an algorithm that generates controllers guaranteeing every possible execution of a
finite-state machine for robots with nonlinear dynamics.

Since a large number of computations are required to compute trajectories and funnels sat-
isfying ellipsoidal constraints, the trade-off between completeness and complexity will need to
be explored further. In contrast to the approach taken in this paper, one could devise a depth-
first strategy which seeks to generate atomic controllers in concentrated parts of the configuration
space. While there is much to be gained in terms of computational efficiency (there would be fewer
funnels in the database), this would be at the expense of completeness, since the vast majority of
possible configurations would not be tied into the funnel libraries.

If a set of atomic controllers cannot be synthesized, a natural question might be to ask: which
parts of the specification, when modified, would allow the synthesis of controllers? If the algo-
rithm fails to find a set of low-level controllers satisfying the specification, one may apply tech-
niques such as the one in [GLB12] to revise specifications in such a way that low-level controllers
exist. Creating a general, intuitive way of providing user feedback for specification revisions is a
topic we intend to explore as future work.
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