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Abstract— Applying correct-by-construction planning tech-
niques to robots with complex nonlinear dynamics requires new
formal analysis methods which guarantee that the requested
behaviors can be achieved in the continuous space. In this paper,
we construct low-level controllers that ensure the execution
of a high-level mission plan. Controllers are generated using
trajectory-based verification to produce a set of robust reach
tubes which strictly guarantee that the required motions achieve
the desired task specification. Reach tubes, computed here by
solving a series of sum-of-squares optimization problems, are
composed in such a way that all trajectories ensure correct high-
level behaviors. We illustrate the new method using an input-
limited unicycle robot satisfying task specifications expressed
in linear temporal logic.

I. INTRODUCTION

Growing attention in robot mission planning is being
directed to addressing the problem of synthesizing controllers
for a complex set of reactive tasks. Tools for correct-by-
construction synthesis are therefore being developed to auto-
matically synthesize hybrid controllers based on a set of user-
defined instructions encoded formally as a specification. Re-
cently, several researchers (e.g. [1]-[7]) have developed tech-
niques which translate user-defined specifications expressed
as temporal logic formulas into high-level controllers which
guarantee fulfillment of the specification. One property of
these methods is that they can guarantee fulfillment of a task
as long as there exist low-level controllers to implement the
actions requested by the hybrid controller. Another property
is that many ( [3], [7]) allow for reactive tasks, i.e. tasks that
call for the robot’s actions to change in response to real-time
sensory information.

Motion planning for complex robotic platforms, such
as robotic manipulators [8], personal assistants [9], self-
driving vehicles [10], and unmanned air vehicles (UAVs)
[4], has been the subject of intense research in recent
years. While these algorithms deal well with specifications
involving a fixed goal or sequence of goals, further work
is required to generate motion controllers that guarantee the
rich set of behaviors resulting from temporal logic planning.
Temporal logic planners, on the other hand, have enjoyed
success when applied to nonholonomic kinematic models
[11] or piecewise-affine dynamical robot models [12]. For
these classes of systems, atomic (low-level) feedback control
strategies are devised to ensure that high-level specifications
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are satisfied. The primary drawback is that such methods do
not extend generally to more complex systems.

The aim of this work is to introduce a method for the
automatic synthesis of low-level controllers for arbitrary
dynamical systems. Under this new framework, controllers
can be generated to ensure the specification will be achieved
either globally throughout the continuous domain or within a
subset of it. This result is of key importance to guaranteeing
the feasibility of the task in the continuous space. If the
original specification is infeasible, it may be possible to
either limit the domain or create alternative specifications
which are more compatible with the robot dynamics.

The main contribution of this paper is an algorithm which
implements reactive behaviors for a robot subjected to any
possible environmental events in a known map. Our method
assumes a discrete automaton synthesized from a high-level
specification and generates motion primitives for complex
systems implementing each of the automaton transitions.
The algorithm will either result in the successful generation
of a library of controllers, or failure if no controller is
found which guarantees the execution of any portion of the
automaton. If a controller is synthesizable, the subsets of
the configuration space where guarantees hold will also be
provided. We apply the method of invariant funnels [13] to
perform construction of controllers and verification of the
closed-loop system in the continuous domain, due to its
applicability to a variety of types of models and treatment
of different sources of uncertainty.

There has been considerable work on techniques which
can generate controllers that preserve the reachability and
safety of nonlinear systems, i.e. controllers which guarantee
that desired goals may be reached while avoiding any “bad”
portions of the state space. In [14], the authors offer an
approach to directly synthesize controllers based on a game-
theoretic criterion. Reachable sets of the closed-loop dynam-
ics and controllers are selected based on whether or not these
reachable sets intersect with obstacles. In [15], nonlinear
models are abstracted symbolically to enable the construction
of a hybrid control system. By virtue of the type of abstaction
used, the method does not require the exact computation
of reachable sets. Other safety verification methods include
barrier certificates [16], and polyhedral methods based on
state space partitioning [17].

The strategy we propose takes inspiration primarily from
the work of [13], [18]. In [18], the authors propose a
method which translates the desired high-level behaviors
into continuous controller specifications. The high-level con-
troller, taking the form of a hybrid automaton, is synthesized



from a linear temporal logic (LTL) specification, and low-
level controllers are then automatically constructed from
the synthesized automaton. The invariant funnels method
in [13] composes a reachable set based on locally-derived
neighborhoods (funnels) computed about a set of sample
trajectories. These funnels, computed based on the system
dynamics, guarantee that all trajectories starting within the
funnel remain within the funnel over a finite time interval.
The method is extended in [19] to include the effects of
bounded disturbances for on-line motion planning.

Our approach differs from these works in that we seek
explicit guarantees in the continuous space for a given set
of controllers acting on a nonlinear robot model operating
reactively in a dynamic environment [7]. For example, if
a housekeeping robot senses a fire, a reasonable reactive
task would be for it to abort its current tasks and proceed
to the living room to call for help. Although the work
of [19] permits replanning in the presence of obstacles
and disturbances, it does not address scenarios where goals
may change as a result of events in the environment. The
algorithm we introduce adheres to a property which we
call reactive composition which enforces the requirement
that, along any trajectory implementing any one automaton
transition, there exist trajectories implementing all remaining
transitions. Our approach, moreover, allows the robot model
to assume the form of a high-order nonlinear model, while
the work in [18] considers a fully-actuated robot.

The paper introduces the problem through a motivating
example in Section II. In Section III, the concept of LTL-
based controller synthesis is introduced as it relates to
atomic controller design. Section IV covers the trajectory-
based verification technique used for construction of local
controllers. The algorithm for the design of a library of
controllers which satisfy the specification is presented in
Section V. Two illustrative examples are given in Section
VI for an input-limited robotic unicycle. Finally, the paper
concludes in Section VII with a summary and future work.

II. MOTIVATING EXAMPLE

To motivate this work, we provide a simple example, and
briefly discuss its implications.

Example 1. Consider a balancing unicycle robot moving in
the environment shown in Fig. 1(a). The robot is initially in
r1 and must continually patrol r3 and ry. If the robot senses a
pursuer, then it must return to v, (home). The specification is
implemented by the discrete automaton shown in Fig. 1(b).
In our model of the unicycle, the forward velocity is held
fixed and the angular velocity is constrained to an interval.

To model the unicycle robot, we consider the following
kinematic model:

T, v cos 0
Ur | = | vsin€ |,
0 w

where z, and y, are the Cartesian coordinates of the robot,
6 is the orientation angle, and v and w are, respectively, the

{pursuer, =pursuer}

(b)

Fig. 1. Workspace and controller automaton for Example 1. In (a), a 2-D
workspace is shown, along with a sample trajectory. In (b), the number at
the top of each circle is the state, while the values in parentheses denote
the region associated with that state. The transitions between each state are
each indicated with the truth value of the pursuer sensor needed to make
the transition.

forward and angular velocity inputs to the system. For this
work, we augment the model by limiting w such that

Wmae i U 2> Wnaz
w = Wmin if u S Wmin
u otherwise

and v = vpom. The input u is governed by a feedback con-
troller which steers the robot from some initial configuration
to the desired configuration. The details of the construction
of this controller are discussed in Section IV.

Our objective is to construct feedback controllers which
guarantee the region transitions in the automaton; in this
case, the automaton (shown in Fig. 1(b)) requires motion
to occur between r1, ro, and r3. One of the key challenges
in synthesizing these controllers arises from the presence of
reactive behaviors: the robot may change its goals based on
the value of the pursuer sensor. This is illustrated more
clearly by the segment of the trajectory pictured in Fig. 1(a).
With pursuer set to False, the robot begins in 7; (state 1
in Fig. 1(b)), then moves to 7 (state 2), to be followed by r3
(state 3). The pursuer sensor then turns True as the robot
is implementing the ro—rs transition. The new goal is now
state 1, forcing the robot to move to r;. Before exiting ro,
pursuer again becomes False, and the robot once again
resumes towards r3 (state 3).

If the robot had entered r3 on the ro—ry transition or rq
on the ro—rj3 transition, the automaton in Fig. 1(b) would be
violated, and the robot would fail under this control strategy.
In general, pursuer may turn True at any point in the
robot’s continuous trajectory, and so the challenge is finding
low-level controllers which guarantee region transitions for
every possible behavior of the environment.

III. PRELIMINARIES

Presented in this section are key concepts from the LTL
controller synthesis method in [7], definitions, and the as-
sumptions on the class of systems treated in this paper.

A. Task Specifications in LTL

Linear temporal logic (LTL) extends propositional logic
by introducing temporal operators, allowing the specification
of desired system behaviors in response to the environment



in which the robot operates. Here, the term system refers
to the set of user specifications which are ascribed to the
robot (e.g. the specification “visit r; and 73”). The term
environment refers to the behavior of events external to
the robot, as perceived by its sensor inputs (e.g. “‘expect a
pursuer only in regions r; and 79”). LTL formulas allow
users to describe behaviors such as liveness, which occur
infinitely often, and safety, which must always hold. The
interplay between system and environment may be specified
by reactive tasks which depend on events detected in the
environment. We refer the reader to [20] for details regarding
the syntax and semantics of LTL.

B. Discrete Abstraction and Automaton

As a necessary step in the synthesis process, we start with
a discrete abstraction to the continuous system. Here, the
continuous configuration space, X C R", is partitioned into
a set of discrete regions which, in our case, are 2D polygons
(not necessarily convex). In this discrete abstraction, sensors
and actions are defined as Boolean propositions. Sensors
may be regarded, for example, as a thresholded value of a
continuous sensed quantity (e.g. noise detection based on a
microphone’s signal intensity). Actions refer to discrete robot
functions (e.g. stand up, sit down) which, along with loco-
motion commands, define the robot’s abstracted behaviors.

An automaton may be synthesized from high-level task
specifications using, for example, the method explained in
[7]. Formally, a finite-state automaton A is defined as a tuple
A=(X,),Q,Qo,0), where:

e X is a set of environment propositions.

e ) is a set of system propositions.

e (Q C Nis a set of discrete states.

e Qo C Q is a set of initial states.

e §:Q x 2% = Q is a deterministic transition relation,
mapping states and subset of environment propositions
to successor states.

Among the set of system propositions ), we distinguish
those which correspond to regions as R C ). We define
YR : @ — R as a state labeling function assigning to each
state the region label for that state, r;. Define the operator
R : Q — R™ as a mapping that associates with each g €
@ the subset X, = R(q) of the free configuration space
X, where X, corresponds to an n-D polytope labeled with
Y= (q). In the case of a 2-D nonholonomic robot, we have
a 3-D configuration space (z,, y,, and #) and hence 3-D
polytopes. The set of edges in A is defined as A = {(q,¢’) €
Q%32 €2* . 5(q,2) =4}

C. Continuous Dynamics

Before discussing the execution of the controller, we
briefly outline the continuous dynamics. Consider the general
description of a nonlinear system,

T = f(t,x), =z(0)eS

where + € X C R" is the state vector. The initial
states are bounded by some start set S. Throughout, f is
considered to be a smooth, continuous vector field within

its domain X. The interpretation of the system model is
that it represents the closed-loop dynamics of a nonlinear
robot model, evolving according to some prescribed feedback
control system. The details of the construction of these low-
level controllers will be discussed in Section IV.

D. Continuous Execution of the High-Level Controller

A necessary condition for realization of the discrete ab-
straction in the continuous domain is for the closed-loop
system to implement each of the region transitions in A. This
requirement is met trivially if a controller exists for which
each configuration in a region can be sent to at least one
configuration in each adjacent region. In robots with kine-
matic models or fully-actuated dynamics, region transitions
can be guaranteed through standard motion planners based
on potential functions [21] or vector fields [12].

For more general systems, we wish to define the
continuous-domain specifications that controllers must meet
in order to guarantee region transitions in A. For a given
transition from g; to g; not necessarily distinct, we have a
start set S;; C R(q;), goal set G;; C R(g;), and invariant
Inv;; € R(g;) U R(g;) defining where it is necessary for
trajectories to remain as progress is made from one region
to another. Any such controller satisfying a given region
transition is referred to as an atomic controller for the
transition.

Denote a reach tube £;; as the set of states in which the
controlled system remains on ¢ € [0,7;;] for the transition
(¢i,q;)- Also, define I}, = {k € N|(q,qx) € A,q € ¢;} as
the index set of all successor states for state g; (e.g. for state
2 in Fig. 1(b), I2,, = {1,3}), and let I,y = U;I},,.

As defined by [22], for a given set of controllers to be
sequentially composable, we require goal sets to be contained
within the domain of successor reach tubes. If we let £, ;(¢)
denote the slice of £;; at time ¢, then for £;; to be sequential
composable for each edge in A implies that L;;(Ti;) C Ljp
for all k € I,,,. The shortfall of the sequential composition
approach for temporal logic planning is that reach tubes only
need be connected at their boundaries and hence the liveness
and safety conditions in the specification may no longer
be guaranteed. To illustrate this, recall the ro—rs portion
of the trajectory in Fig. 1(a) with pursuer turns False.
When pursuer turns True, the robot must already be in a
state where it may resume motion towards r; without first
entering 73 (a possible safety violation). With sequentially-
composed controllers, there could be states along the segment
where the system will inevitably enter rs as the environment
changes. To prevent such behaviors, we introduce the notion
of reactive composition.

Definition 1 (Reactive Composition). Let X; C X denote
the set of states such that, for all q; € @), there exists a
trajectory from q; to any qi, k € I.,,, i.e. X, = Nkere,, Lik-
A given reach tube L;; is reactively composable with respect
to A if, for (qi,q;) € A, all points on the state trajectories

x € L;; also belong to X; U X ;.

Reactive composability requires that the continuous tra-
jectories associated with a transition out of one state in



A lie in the subset of the state space where there exist
valid trajectories for the other transitions out of that state.
The objective of the algorithm in Section V is to generate
controllers which satisfy the reactive composition property.

IV. CONTROLLER SYNTHESIS AND VERIFICATION

We adopt the Invariant Funnels method of [13] to build
controllers based on a library of trajectories. Associated with
each motion plan is a funnel (robust neighborhood) for which
the property holds that trajectories starting within the funnel
will remain within it for a finite time interval. Constructing
funnels happens in two steps: controller generation and fun-
nel computation. The first step is controller generation, where
a locally-valid linear quadratic regulator (LQR) control law
is adopted to minimize excursions from a sample trajectory.
The second step is to construct funnels which characterize the
domain within which convergence holds and the continuous-
domain specifications are upheld. We present only the salient
information on the Invariant Funnels method here. For a
more comprehensive treatment on the method, the reader is
referred to [13], [19].

Let us denote m as the index of a simulated trajectory
connecting regions ygr(g;) and vyr(g;). The goal is to
compute a set of funnels £}’ and associated set of controllers
c;; defined within those funnels.

A. Motion Planning and Feedback Control

Atomic controllers consist of a collection of control laws
each defined within its own funnel. An important prerequisite
to creating a control law is a sample trajectory which drives
the system towards the goal region G;; from other points
in the state space while keeping it within Inv;;. While
any number of techniques can be applied for trajectory
generation, we adopt a feedback linearization technique
to construct the continuous sample trajectories [23]. Once
generated, these trajectories are recorded as a time history
t?, a trajectory of states x}7, and a trajectory of control

17 ° 17 °
inputs u(t) € uj} over t € [0,7]7]. For systems which

.
are not feedback ﬁnearizable, it is possible to use nonlinear
trajectory optimization methods [24].

Next, local controllers are constructed using the LQR de-
sign approach [25] to drive the system from any neighboring
initial conditions towards the sample trajectory. The system
is first linearized at discrete points about the trajectory,
and a Riccati equation is then solved at each time instant,
producing a time-varying state feedback control gain K (t) €
K. Together, u;; and K7 are stored in a controller library
ci}. Our goal is now to find level sets p;}(t) € R of a
quadratic Lyapunov function V7! (z, t) which define the local
region of invariance of the dynamic system.

B. Invariant Funnels

Given the mth trajectory (77, u;,x;7), funnel computa-
tion proceeds by computing the level sets of these Lyapunov
fun'ctions, h(t) = {95|Vi’j”(gc’7 t)' < pgb(t)}, 'repres'enting the
regions of the state space within which trajectories remain
for t € [0, T[j”] A reach tube for the 7jth region transition

(denoted L;;) is defined in this paper as the union of all

funnels £} (¢) associated with that transition. We modify the
constraints in the objective presented in [19] by including the
goal and invariant sets directly in our search for a maximal
P (t):

max o} (¢),

te 0,1 (1)

st Vil(a,t) < 0, vt € [0,T77], (2)
Vo € {z|V]' (2, 1) = pij (1)},
P?J(t) 2 07 vt e [Oszrjn]a (3)
() = {z|Vi} (z,t) < pi (1)} € Invyy, “4)
Vt € [07 CZ—;ZI]?
(T = =V (2, 1) < pij(T35)} € Gij (5)

Inequalities (2) and (3) follow directly from [19], en-
forcing trajectory invariance to the funnel and positive-
semidefiniteness of the level set. We include the remaining
equalities, (4) and (5), to ensure that level sets are bounded
to start and remain within the invariant Inv;; C X and end
in a goal set G;; C X for the current transition.

V. ATOMIC CONTROLLER SYNTHESIS ALGORITHM

The main contribution of this paper is an algorithm which
takes as its input a finite-state automaton and returns a library
of atomic controllers that guarantee reactive execution of the
automaton. Funnels are computed iteratively until either all
possible configurations within each region are enclosed (to
within a desired metric) by funnels or until it is determined
that coverage is not possible, i.e. there does not exist a L;;
for some (g;,q;) € A. Associated with each funnel /}} is a
control law c%‘; both are stored in a library for later use at
runtime.

A. Algorithm Description

1) Overview: The algorithm for constructing atomic con-
trollers is given in Algorithm 1. The algorithm begins by
calling AutomTransitions which extracts the set of all
unique edges A from automaton A. The algorithm next
computes reach tubes for each element in A. We remark
that our algorithm operates on automaton stafes rather than
workspace regions to reduce conservatism in finding valid
reach tubes. This is because each workspace region is
associated with more than one state with possibly several
transitions, with each transition imposing a unique constraint
on the reach tube. The algorithm terminates successfully
if reach tubes are found for each edge. If not, then the
reach tube computations are revised to ensure they are
reactively composable in the sense of Definition 1. Reactive
composibility is illustrated in Fig. 2(d), where the reach tubes
exiting ¢; (region a) and entering ¢o and g3 (resp. b and c¢)
are contained completely within the larger dashed region.

We introduce two types of reach tubes to assist with
constructing this set: those which invoke a transition between
adjacent regions, L;;, called transition reach tubes, and those
which are confined to a given region, L, labeled inward
reach tubes. The purpose of including inward reach tubes
is to maximize coverage of the state space all regions of
successor states are accessible.
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Illustration of the reach tube computation steps, assuming two-way transitions between each adjoining region. For g1, a pair of transition reach

tubes L12 and £13 are computed in (a), the intersection of which (yellow) defines the new start set for the next iteration (see lines 7-13 in Algorithm 1).
The same is done for the remaining states g2 and g3, (b). Next, inward reach tubes L (red) are generated for each region, (c) (see lines 14-17 in Algorithm
1). This expanded region defines the invariant for the next iteration. The process in lines 7-17 is again repeated for the new start sets and invariants, (d) -
(f), and terminates at (f) since all reach tubes lie inside the regions bounded by the dotted borders (e.g. for g1 this is (612 NLiz U Li) N R(q1)).

2) Computing L;;: The major steps of the algorithm are
illustrated in Fig. 2. In the first iteration of lines 7—13, reach
tubes are computed for each edge (g;,q;) € A. The set £;;
is initially taken as the whole configuration space, while the
goal set Gi;; is the region R(q;) and the invariant Inv;; is the
region R(g;) UR(q;). In Fig. 2(a), reach tubes are computed
for the two transitions (q1,¢2) (blue region) and (q1,¢s)
(green region), and the intersection of the two is taken
(yellow region). This intersection (see Fig. 2(b)) defines the
set of states from which any region of successor states can be
reached (by calling either C;5 or Ci13). The process repeats
for the remaining edges in the automaton. The algorithm
immediately returns failure if an edge is encountered where
a reach tube cannot be constructed (lines 11-13).

3) Computing L$: In order to expand the size of re-
actively composable regions, lines 14—17 construct inward
reach tubes for each region that will drive the robot to a
configuration from which it can take a transition. The initial
set S for L, defined in line 14, is the set R(qj) minus
the intersection of all transition reach tubes from that region
(the white portions in Fig. 2(b)). In Fig. 2(c), the red regions
enclosed by the dashed lines, £¢, denote where controllers
may be found which drive the system into the yellow region.
Thus, if the transition reach tube is contained within the
union of the red and yellow regions in Fig. 2(c), the reach
tube is reactively composable in ¢;.

4) Further Iterations: 1If, after one iteration, the
sequentially-composable transition reach tubes constructed
in the steps above are not also reactively composable, the
process of finding £;; and L£§ must continue until they

are. To test if £;; is reactively composable, we need to
determine if L£;; is contained within a subset of states
where outgoing transitions from ¢g; or g; are possible, i.e.
satisfies (£;; N R(qa)) € (Miere,, Lok N R(ga) U LE) for
a € {i,j}. As such, the termination criterion in line 18
enforces Definition 1, by requiring that transition reach tubes
must either lie within an inward reach tube or the sets where
any successor state is reachable. This additional step is shown
pictorially in the bottom row of Fig. 2. In this iteration, the
sets S;;, Gyj, and Inv;; for the ijth edge are defined by
L;; and Lf. In Fig. 2(d), lines 7-13 are once again repeated,
and new transition reach tubes for a are computed (L2 and
L13) which are constrained to remain within the red and
yellow regions for q;, g2, and gs. After the intersections are
taken (yellow region in Fig. 2(e)), the reach tubes from the
previous iteration are removed and a new set of inward reach
tubes is computed in lines 14—17. Fig. 2(f) illustrates this last
step, and is an example of a situation where the algorithm
successfully terminates because the reactive composability
criterion in line 18 is fulfilled. Upon successful termination,
the algorithm returns a library of funnels £ along with a
library of controllers C in lines 23-19.

5) Computing Reach Tubes: GetReachTube is iterated
up to N times, with the following steps:

1) Pick a random initial point in the start region S

2) Pick a final point inside the goal set GG, seeking the
centroid of the region if G is a polygon and a random
point if G is defined by reach tubes

3) Generate a feasible trajectory connecting the initial and
final configurations



Algorithm 1:
(L,C) + ConstructControllers(A, R, f,e,N)

Input: Synthesized automaton A with region mappings
R(-), closed-loop robot dynamics f(-), coverage
metric €, and number of iterations N for
coverage

Output: A set of funnels £ and controllers C

guaranteeing the execution of A

(A, Ipyt)  AutomTransitions(A)

for (¢;,¢;) € A do

Eij +— R"

end

E?%@,C?%@tiGQ

while True do // Repeat until all reach

tubes are reactively composable or until

A U1 A W N -

failure
7 for (¢i,q;) € A do
8 S < ﬂkGIéutﬁik n R(ql)
9 Gemkeﬂ tﬁjkﬁR((]j)Uﬁj
10 (,Cij,Ci]») —

GetReachTube(S,G,S UL UG, f,e,N)

1 if £;; =@ then
12 return @ // No controller exists
13 end
14 8 Rla)\ (Nwers, Lv U £5)
15 G+ Miers,, Lin N R(g:)
16 (L$,C¢) < GetReachTube(S, G, R(q;), f,€,N)
17 end

-
=)

if V(gi,q;) € A
(ﬁij NR qz)) Q (mkEI;’utﬁik N R(ql) @] ﬁf)] A

(
(Lij N R(gs)) € (”kefgmﬁjk N R(g;) U E?)}

then // All are reactively composable
19 L (Ui L5 Ui L5), C = (Ui ;Cij U; CF)
20 return L, C
21 end
22 end

4) For any feasible trajectory, compute a funnel according
to the procedure in Section IV
5) If feasible, append to the existing library of funnels

We address some important implementation details re-
lating to funnel coverage. Due to the regional constraints
imposed by boundaries and neighboring regions, the problem
of covering the set of configurations in state g; for a transition
from g; to g; may not terminate. The algorithm allows for
this by introducing a metric € € [0, 1] allowing the coverage
loop to terminate without actually achieving full coverage.
We declare the space covered if Vol(LNS) > (1—¢€)Vol(S)
or if m > N where Vol is the volume of a particular set
defined in R™, m is the current funnel iterate, and N is
the termination criterion. The former condition asserts that
coverage terminates if the reach tube £ covers a significant
enough portion of start set. If the coverage is not achieved

before N iterations, then there may be transitions from region
~vr(g;) which are not reachable from some parts of the
state space R(q;) for that region. Note that we are free to
select a sufficiently large N for the sake of probabilistic
completeness [13], however achieving good enough coverage
depends in large part on the dimension of the state space.

One difficulty with implementing funnels as reach tubes
is that coverage degenerates at the boundaries of polyhedral
invariants due to the curvature arising from the ellipsoidal
level sets, making it impossible for the algorithm to generate
reach tubes spanning across regions. We work around this
issue by relaxing the interface between neighboring regions
by some fixed tolerance value d. This parameter allows
regions to share territory by an amount defined by this
fixed distance. To more strictly enforce one of the two
region boundaries, one can adjust the shared boundary in
the direction of one region or another.

B. Controller Execution

The controllers used to execute the motion plan associated
with a discrete automaton are selected at runtime according
to the current state of the robot and the current values of
the sensor propositions. The planner executes the controller
associated with the funnel containing the current state (e.g.
ci if within £} ()). As the continuous trajectory evolves, a
new funnel is selected if one of three events occur: (i) the
end of a funnel is reached, (ii) a region transition is made, or
(iii) an environment proposition changes. Priority is given to
transition funnels £;; over inward £5. If the robot is currently
executing a funnel in £ and it reaches a funnel in L;;,
with r; as the goal for that transition, the motion controller
is switched accordingly. In example 1, consider the r;—ro
transition with pursuer False. At the current time step, the
robot is executing the reach tube L;5 and has just reached
ro. The next goal (r3) is implemented by switching to Log
if within that funnel. Otherwise, the planner will choose L.
To disambiguate between multiple funnel choices, one may
be selected according to its ordering in the library.

VI. EXAMPLES

In this section, we demonstrate the application of the
method developed in this paper to two examples. The model
in Section II is adopted with the parameter settings wy,;, =
=3, Wmaz = 3, and Vpom = 2.

A. Patrolling Two Regions

We address the case study in Example 1, whose 10m x 9m
workspace consists of the three regions arranged as shown
in Fig. 1(a). The task specification is as follows: assuming a
starting configuration in r1, the robot must repeatedly visit
r1 and r3. If a pursuer is sensed, the robot is to return
immediately to 1. We synthesize the specification as a high-
level controller represented in Fig. 1(b).

A library of controllers is generated according to the
algorithm in Section V, adopting sum-of-squares (SoS) pro-
gramming [26] to solve (1)—(5). For this example, we set the
coverage metric € = 0.2, the number of iterations N = 100,
and the interface relaxation d = 0.2m. The computation took



Fig. 3. A transition funnel and a slice of the inward reach tubes at 0 = 1.46
for the transition from r2 to 73 after the first iteration of Algorithm 1. The
inset shows a 2-D view of the slice. In this iteration, the funnel is not
reactively composable.

Fig. 4. A transition funnel and a slice of the inward reach tubes at
6 = —0.41 for the transition from 72 to r3 after the second iteration
of Algorithm 1. The inset shows a 2-D view of the slice. The funnel is now
reactively composable because it is now completely enclosed by the set of
inward-facing funnels.

approximately 340 min. Reach tubes L3 are generated in the
first and second iterations for (12, r3) and sample funnels are
shown in Figs. 3 and 4. Also shown are the #-slices of the
inward reach tubes £5 and £§ (shown in red and blue). In
the first iteration, the funnel spans a gap in the set of inward
funnels and hence is not reactively composable. After the
second iteration, the revised funnel is reactively composable
for all transitions and no further iterations are necessary. The
volumetric region coverage for each of the four states are,
respectively, 0.6018, 0.3388, 0.6507, and 0.3456 for q1, g2,
qs3, and q4. Here, volume fraction is defined as the ratio of the
actual volume of the region polytope R(g;) in (z,,y,,0) and
the subset of that polytope which contains Nyeyi  Lix U LS.

Fig. 5 shows a sample trajectory of a robot starting in
r1, in which a controller in C;2 is applied, followed by a
controller in C§ and one in Ca3. Part way through its motion
to r3, the pursuer sensor turns True, invoking the sequence
Cg, Ca1 to take the robot to r1. pursuer once again becomes
False prompting activation of a controller in C§ followed
by one in Ca3. As can be seen, the robot remains within the

Fig. 5. Closed-loop trajectory generated from an initial state in r1. A
set of control laws are applied to implement the transitions (r1,7r2) and
(r2,73), driving the robot from state 1 to state 2, then from state 2 to state
3 in Fig. 1(b). 2-D projections of the active funnels are also shown, the red
corresponds to inward and green corresponds to transition. pursuer turns
True when at the location marked by the “+” sign. At this instant, another
controller is invoked to make the transition (r2,71). pursuer turns False
at the “x” location, and new control laws are used to resume the transition
(r2,73).

—inR3 .
inR3

Fig. 6. Discrete automaton for the pursuit-evasion example.

funnels when making transitions between regions, even when
reacting to the environment.

B. Pursuit-Evasion

In this example, the robot is engaged in a game where
the robot must visit the home and goal regions in Fig.
7, while evading a pursuer which visits each of the three
remaining regions infinitely often. Evasion is encoded by
the requirement that the robot should always remain out of
the region occupied by the pursuer. As a fairness condition
for LTL synthesis, in the specification we assume also that
the pursuer cannot occupy the same region as the robot.
The high-level controller (Fig. 6) consists of eight states and
13 edges. The sensor values inR1, etc. correspond to the
observed pursuer location among the three possible regions.

Reach tubes are constructed for each of the 13 transitions.
In this example, the computation took approximately 660
min. A subset of these (the highlighted edges in Fig. 6) are
shown in Fig. 7, showing the possible trajectories that the
robot may follow when transitioning between goal and 73
(denoted green), and when transitioning between 73 and 7.
Note that the goal-r3 funnels all deliver the robot to the left
of goal. The reason for this is that there are two possible
transitions out of r3 (r; and r3) depending on the location of
the pursuer. To the left of the goal region, the robot is easily
able to toggle between the goals r; and ro as the pursuer



Fig. 7. Transition funnels for £5¢ and Le7 (green). L§ and L5 are shaded
red and L§ is shaded blue.

toggles between regions. Without reactive composition, a
motion planner may deliver the robot above goal, where
there may exist controllers which can deliver the robot to
r1 (when inR2 is True), but not 5 (when inR1 is True).
If inR1 remains True long enough, the robot may have no
other option but to enter r; (because there are no funnels
available to deliver it to 73), resulting in a safety violation
of the original specification.

VII. CONCLUSION

In this paper, a method is presented for synthesizing
controllers in the continuous domain based on a discrete con-
troller derived from temporal logic specifications. The central
contribution of this paper is an algorithm that generates
controllers guaranteeing every possible (reactive) execution
of a discrete automaton for robots with nonlinear dynamics.
In the future, our strategy will be extended as in [19] to deal
with bounded disturbances in the continuous space.

Since a large number of computations are required to
compute trajectories and funnels satisfying ellipsoidal con-
straints, the trade-off between completeness and complexity
will need to be explored further. In contrast to the approach
taken in this paper, one could devise a depth-first strategy
which seeks to generate atomic controllers in concentrated
parts of the configuration space. While there is much to be
gained in terms of computational efficiency (there would
be fewer funnels in the database), this would be at the
expense of completeness, since the vast majority of possible
configurations would not be tied into the funnel libraries.
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