
Dynamics-Driven Adaptive Abstraction for Reactive High-Level Mission
and Motion Planning

Jonathan A. DeCastro1, Vasumathi Raman2 and Hadas Kress-Gazit1

Abstract— We present a new framework for reactive synthesis
that considers the dynamics of the robot when synthesizing
correct-by-construction controllers for nonlinear systems. Many
high-level synthesis approaches employ discrete abstractions to
reason about the dynamics of the continuous system in a
simplified manner. Often, these abstractions are expensive to
compute. We circumvent the need to have detailed abstrac-
tions for nonlinear systems by proposing a framework for
adapting abstractions based on partial solutions to the low-
level controller synthesis problem. The contribution of this
paper is a reactive synthesis algorithm that makes use of our
adaptation procedure to update the high-level strategy each
time the non-deterministic discrete abstraction is modified.
We combine this with a verified low-level controller synthesis
scheme capable of automatically synthesizing controllers for a
wide class of nonlinear systems. This novel synthesis framework
is demonstrated on a dynamical robot executing an autonomous
inspection task.

I. INTRODUCTION

The synthesis problem takes as input a discrete abstrac-
tion of a robot, a map of its workspace, and a formal
mission specification, and returns (if possible) a high-level
controller that achieves the specified behavior. In reactive
synthesis [11], [22], the specification and abstraction include
a description of the uncontrolled environment in which
the robot operates. In order to be implemented on real
robotic platforms, these approaches rely on the computation
of atomic controllers, which are feedback control policies
verified to implement the various high-level actions of the
synthesized controller in finite time. The task of constructing
these low-level controllers given a particular robotic platform
presents a major challenge to synthesis. Recent tools for
such multi-layered synthesis have included provably-correct
online motion planning [2], [14], automatically-constructed
navigation functions [9], and offline synthesis of verified
controllers for a wide class of nonlinear systems [7]. Each
of these methods preserve a hierarchical planning structure:
whether or not the strategy can be implemented rests heavily
on the dynamics of the physical system, as well as the
availability of an accurate abstraction.

The following example emphasizes the importance of
accurately modeling the robot’s dynamics during the high-
level synthesis step. Consider the map in Figure 1, where a
robot moving with constant speed and limited turning radius

*J.A. DeCastro and H. Kress-Gazit are supported in part by NSF
Expeditions in Computer Augmented Program Engineering (ExCAPE). V.
Raman is supported in part by TerraSwarm.

1Sibley School of Mechanical and Aerospace Engi-
neering, Cornell University, Ithaca, NY 14853, USA
{jad455,hadaskg}@cornell.edu;

2Department of Computing and Mathematical Sciences, California Insti-
tute of Technology, Pasadena CA 91125, USA vasu@caltech.edu.

is assigned the following task: Start in r1. Visit r2. If a person
is seen when in r1, remain in r1. Assume that infinitely often no
person will be seen. Assume that if not in r1, no person will be
seen. A high-level controller satisfying the task (Figure 1a)
mandates that robot stay in r2 once it is reached; however,
this cannot be implemented at the low level given the robot’s
physical limitations for movement in r2. Nonetheless, there
exists a discrete controller (Figure 1b) that both satisfies the
specification and can be implemented at the low level given
the robot’s dynamics. The atomic controllers that implement
this solution steer the robot from r1 to either r2 or r3 if no
person is seen.

r1 r2
¬person

person ¬person

(a)

r1 r2 r3
¬person

person ¬person

¬person

(b)
Fig. 1: (a) High-level controller that cannot be implemented
at the low-level due to inaccurate abstraction of the robot
dynamics. States are labeled with regions and edges are
labeled with environment inputs. (b) Realizable high-level
controller and continuous trajectory.

In contrast to strictly hierarchical planning methods, we
introduce a framework that tightly couples the synthesis
of high-level controllers with the automatic computation of
atomic controllers. As opposed to approaches that use a
fixed discrete abstraction for temporal logic synthesis, we
continually adapt the abstraction based on partial solutions
to the atomic controller synthesis problem, in combination
with formal analysis at the high level. We first introduce a
framework for encoding classes of abstractions that assume
arbitrary motion durations. Given that a high-level controller
has been synthesized, a set of constraints is imposed on the
atomic controllers. Our scheme then attempts to implement
the strategy by synthesizing these atomic controllers, revising
the discrete abstraction if any actions are deemed unachiev-
able during the process. We use the intermediate results of
the high-level synthesis to further guide modifications to the

abstraction. If successful, the algorithm outputs both a high-
level controller and a family of atomic controllers that satisfy
the specification. The focus of this paper is robot locomotion,
and extending the approach to actions besides motion is the
subject of future work.

Numerous works have dealt with provably-correct con-
troller synthesis while accounting for complex system dy-
namics. For example, in [13], [12] two methods are in-
troduced for synthesizing reactive switching policies that
are versatile enough to handle a wide class of abstractions,
while in [10] a method is introduced for synthesizing high-
level controllers using a custom-designed set of low-level
controllers for a vehicle with Ackermann steering. In the
non-reactive setting, recent work has harnessed reachability
computations guided by a synthesized control strategy, for
the purpose of refining that strategy. Notably, [3] introduce a
method where a tree-based motion planner is used to explore
a coarsely-decomposed workspace. Any exploration results
are fed back to the high-level planner to update the mission
plan based on certain “feasibility estimates” that, in part,
account for the dynamics of the robot. The authors of [14]
extend this work in the development of an iterative planning
strategy for nonlinear systems in which uncertain elements in
the environment may be discovered at runtime. The approach
taken in [21] leverages the results of high-level synthesis
to specify a set of constrained reachability problems to
be solved by an optimizer, and uses this information to
concretize an abstract high-level plan.

Drawing inspiration from previous approaches to
counterexample-guided abstraction refinement [6], we adapt
our discrete abstractions on the fly, eliminating the need
for the potentially costly procedure of computing up front
a catch-all discrete abstraction for a given dynamical
system. Others (e.g. [15], [1]) have used specifications
to guide refinement of the discrete abstraction, relying
on an incremental re-partitioning of the workspace. This
partitioning step could expand the number of problem
variables in an unbounded fashion, increasing complexity
of the high-level synthesis. Instead, we adopt an abstraction
methodology based on a fixed workspace partitioning, which
does not result in this explosion of added variables.

Rather than computing a concrete trajectory to instantiate
an abstract one as in [3], [21], we adopt the problem setting
of [7] in which we compute atomic controllers that can
be invoked at runtime, with each one verified over a finite
domain of the state space. Hence, our approach differs from
that of [2], [3], in that we are able to provide formal
guarantees that allow for immediate reactivity to the sensed
environment. Our approach is also less conservative than [7]
with respect to specifications that can be realized on a given
robot platform due to the fact that our algorithm adapts the
abstraction when the low-level synthesis step fails. That is,
if a specification is realizable and can be implemented on a
given robot model, it is more likely to find such controllers
using the approach presented here.

II. PROBLEM FORMULATION

A. Dynamical System
Consider the function f : Rn × Rm → Rn defining the

(deterministic) system

ξ̇(t) = f(ξ(t), u(t)), (1)

where ξ(t) is the continuous state of the robot and u(t) the
command input of the robot at time t ∈ R≥0. Denote by ξT
the trajectory defined over the finite time interval t ∈ [0, T)
starting from an initial state ξT (0).

B. Linear Temporal Logic
The syntax of linear temporal logic (LTL) formulas is

defined over a set AP of atomic (Boolean) propositions by
the recursive grammar:

ϕ ::= π | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2

where π ∈ AP and ∧, ¬, ©, and U are the operators
“conjunction”, “negation”, “next”, and “until”, respectively.
We derive “disjunction” ∨, “implication” ⇒, “equivalence”
⇔, “always” �, and “eventually” � from these operators.
LTL formulas are evaluated over infinite sequences σ =
σ0σ1σ2 . . . of truth assignments to the propositions in AP .
For example, σ satisfies “always” ϕ, denoted σ |= �ϕ, if
and only if ϕ is true in every σi. The reader is referred to
[5] for further details on the semantics of LTL.

We define a set of environment propositions X describing
sensed events that the robot must react to, and a set of system
propositions Y describing the actions of the robot; AP =
X ∪ Y . For S ⊆ AP , we also define ©S = {©πi}πi∈S .
Finally, we denote by 2S the set of truth valuations to the
Boolean propositions in S (each subset of S corresponds to
a truth valuation in which that set of variables is True and
everything else is False).

Definition 1 (Robot Mission Specification). In this work, a
robot mission specification is an LTL formula of the form:

ϕ := ϕe =⇒ ϕs,

where ϕe and ϕs are defined over AP and ©AP , and
are further decomposed into formulas for initial conditions,
safety conditions to be satisfied always, and liveness condi-
tions (goals) to be satisfied infinitely often1.

Definition 2 (Controller Strategy). Define a controller as a
finite-state machine A = (S, S0,X ,Y, δ, γX , γY), where
• S is the set of controller states;
• S0 ⊆ S is the set of initial controller states;
• X and Y are environment and system propositions;
• δ : S × 2X → S is a state transition relation;
• γX : S → 2X is a labelling function mapping controller

states to the set of environment propositions that are
True for incoming transitions to that state, and;

• γY : S → 2Y is a labelling function mapping controller
states to the set of system propositions that are True in
that state.

1More precisely, robot mission specifications are in the the generalized
reactivity fragment of rank 1 (GR(1)).

(a) (b)
Fig. 2: (a) A transition of the discrete abstraction. (b) Two
sequentially-composable transitions.

Given an infinite sequence of truth valuations to envi-
ronment propositions, Xω = x0x1x2 . . . ∈ (2X)ω , the
execution of A starting from s0 is given by s0s1s2 . . .
where si = δ(si−1xi−1) for all i ≥ 1. The sequence of
labels (truth valuations to AP) thus generated is σAXω =
(γX (s0), γY(s0))(γX (s1), γY(s1)) An LTL formula ϕ is
realizable if there exists a controller A such that, for every
Xω ∈ (2X)ω , σAXω |= ϕ. If there does not exist such an A,
ϕ is unrealizable. Synthesizing A (if it exists) from a robot
mission specification follows directly from the solution to a
two-player game, as described in [4].

C. Discrete Abstractions
Given a bounded configuration space W ⊂ Rn, let R =

{r1 . . . rp} represent a set of regions, not necessarily disjoint,
covering W , where ri ⊆W . We adopt the motion encoding
of [18] by introducing the set of completion propositions
Xc ⊆ X that are True whenever a transition between regions
has completed, or a request to remain within a region is
already fulfilled. Let πi ∈ Xc denote a proposition that is
True when the robot is in ri ∈ R, and let πai ∈ Y denote
a proposition that is True when the robot is activating an
atomic controller to move to ri ∈ R. We assume that all πai
are mutually exclusive – the robot can only activate motion
towards one region at a time. For example, Figure 2a shows a
case where, if the robot is in r3 (π3 is True) and is activating
πa1, it will eventually arrive in r1.

Definition 3 (Controlled Discrete Abstractions). We de-
fine a controlled discrete abstraction Sr as the tuple
(Xc,Y, δr,Πinv), where:
• Xc and Y are atomic propositions defined as above;
• δr : Xc × Y → Xc is a transition relation defining a

target region πj = δr(πi, πaj) given a region πi ∈ Xc
and action πaj ∈ Y .

• Πinv : Xc × Y → 2Xc is a function mapping a region
πi ∈ Xc and action πaj ∈ Y to a set of possible regions
that may be visited during the transition from πi to πj
under πaj .

In Figure 2a, for example, δr(π3, πa1) = π1 and
Πinv(π3, πa1) = {π3, π1, π2} because there are a total of
three regions that could be visited upon invoking a transition
from r3 under the action πa1.

D. Atomic Controllers
Let I(i, j) denote an index set of invariant regions for

transitioning from πi to πj under the action πaj , such that

πi, πj ∈ Πinv(πi, πaj) = {πk | k ∈ I(i, j)}. Also, assume
that each region indexed by I(i, j) is connected to at least
one other region indexed by I(i, j). Given any two regions
with associated completion propositions πi, πj and an action
πaj , we define an atomic controller κi,j : Rn → Rm as
a function mapping continuous states to control commands
u(t) = κij(ξTij

(t)) such that, given the initial condition
ξTij

(0) ∈ ri there exists a final state ξTij
(Tij) ∈ rj such

that ξTij
(t) ∈

⋃
k∈I(i,j) rk for all t ∈ [0, Tij). Intuitively,

κij denotes a controller that produces a trajectory steering
the system from ri to rj without leaving the set defined by
the regions enumerated in the set Πinv(πi, πaj). Returning to
Figure 2a, κ31 produces the set of trajectories shown, driving
the system from r3 to r1 while remaining in Πinv(π3, πa1) =
{π3, π1, π2}.

We denote the reach set of κij by Lij(t) ⊂
⋃
k∈I(i,j) rk,

for t ∈ [0, Tij). Lij is defined as the time-indexed set such
that, for all initial states ξTij

(0) ∈ Lij(0), for all t ∈ [0, Tij)
the continuous state of the robot satisfies ξTij

(t) ∈ Lij(t)
under the controller command u(t) = κij(ξTij

(t)) for all
t ∈ [0, Tij). We denote a collection of atomic controllers by
C, where C = {κij}i,j .

Definition 4 (Low-Level Controller Implementations).
Given a controller strategy A and s ∈ S, let πi = γX (s)∩Xc
be the region the robot is in for state s. Define

Iiout = {k | s′ = δ(s, γX (s′)), πk = γX (s′) ∩ Xc}.

Iiout is the index set of all possible successor regions to πi
in A. Also, let σpre denote a finite prefix of an execution
σ, and σsuff denote an infinite suffix of σ. For j ∈ Iiout,
a family of controllers C is an implementation of A if, for
all executions σ = (σpre(γ

X (s), πi)(γ
X (s′), πj)σsuff) of A,

the following two properties are satisfied (Definitions 1 and
2 in [7]):

1) Sequential composition. Lij(Tij) ⊆⋂
k∈Ijout

{Ljk(t)}t∈[0,Tjk). That is, κjk is sequentially
composable if each of the successor transitions is
reachable from the target set of its predecessor
Lij(Tij).

2) Reactive composition. For each k ∈ Ijout and
for all t ∈ [0, Tjk), if there is a trajectory
ξTjk

such that ξTjk
(t) ∈ Ljk(t) ∩ rj , then

ξTjk
(t) ∈

⋂
k∈Ijout

{Ljk(t)}t∈[0,Tjk). Intuitively, every-
where along the trajectory in rj , the robot may ‘opt-
out’ of moving to region k and instead enable an action
to a region Ijout\{k}.

Figure 2b illustrates sequential composability of κ23 with
respect to κ32 because L23(T23) ⊂ L32(0). We say that A is
implementable under f if there exists an infinite continuous
trajectory controlled by a sequence C for all executions
σ of A; otherwise, it is unimplementable. Note that these
definitions imply that the infinite continuous trajectories are
non-blocking; that is, the robot will always have access to a
valid controller allowing for all of the executions in A.

E. Problem Statement
The problem addressed in this paper is the following:

Problem 1. Given a continuous system f and a formula ϕ
that is realizable with respect to a discrete abstraction Sr,
synthesize a high-level controller A and an implementing
library of low-level atomic controllers C. If no low-level
controllers can be computed, find a new Sr (if one exists)
for which both A and C can be synthesized.

III. ENCODING ABSTRACTIONS AS LTL FORMULAS

In this section, we show how to transform non-
deterministic controlled discrete abstractions in Definition 3
into a set of temporal logic formulas, representing the behav-
ior of continuous systems where the completion of motion
commands take arbitrarily long to complete. To accomplish
this, we adopt an approach similar to that described in [18].

We transform Sr in Definition 3 into a formula ψr over
Y and Xc that encodes the allowed robot commands given
the current region. In this setting, we require two sets of
formulas: one describing the transitions allowed by Sr; the
other describing completion of a motion. These formulas are
defined as follows:

ψrt =
∧

πi∈Xc

�

©πi =⇒
∨

πaj∈Y:
δr(πi,πaj)6=∅

©πaj

 , (2)

ψrtc =
∧

πi∈Xc
πaj∈Y

�

πi ∧ πaj =⇒
∨

πj∈Πinv(πi,πaj)

©πj

 .(3)

Here ψrt describes which region propositions can be activated
in the next time step (©πaj) given the next completion
variables (Xπi). On the other hand, ψrtc describes the allowed
transitions in terms of the completion variables that can
become true in the next time step (©πj) given the current
completion variables (πi) and the motion controllers that are
currently active (πaj).

Finally, we define

ψrg = � �
∨

πj∈Xc,πaj∈Y
(πaj ∧©(πj ∨ ¬πaj)) . (4)

This is a fairness assumption on the environment, which
enforces that every action eventually completes as long as
the system doesn’t change its mind.

For example, consider the transition shown in Figure 2a.
Taking πa1, πa2 as activation propositions and π1, . . . , π4 as
completion propositions we have the following:

ψrt = �(π3 =⇒ (©πa1 ∨©πa2)),

ψrtc = �(π3 ∧ πa1 =⇒ (©π3 ∨©π1 ∨©π2))∧
�(π3 ∧ πa2 =⇒ (©π3 ∨©π2))∧
�(π2 ∧ πa1 =⇒ (©π2 ∨©π1)),

ψrg = � � ((πa1 ∧©(π1 ∨ ¬πa1)) ∨ (πa2 ∧©(π2 ∨ ¬πa2))) .

Due to the non-determinism in the abstraction, the for-
mulas ψrtc and ψrg act as additional assumptions on the
environment, while ψrt is a specification for the system.
The environment in this case is allowed to choose any

successor state in the abstraction as long as the assumptions
are fulfilled. We obtain the final specification

ϕ′ = (ϕe ∧ ψrtc ∧ ψrg) =⇒ ϕs ∧ ψrt .

This specification is a slight generalization of GR(1), since
the system liveness condition admits the © operator; the
synthesis algorithm in [17] can be used to synthesize an
automaton for ϕ′.

Note that our formulation of the abstraction treats a similar
class of systems as in [13], [12], but our contribution has
some significant differences. First, the liveness condition
requires, for each action, that infinitely often, a region
transition will be completed. In contrast, [13] offers a means
for explicitly characterizing the behaviors of trajectories
(controlled or uncontrolled) and as such only require a
liveness property that states that the trajectories must always
leave a region or set of regions. This difference emphasizes
the point that our abstractions encode additional information
on the convergence of the controlled system trajectories. The
second difference is that we allow abstractions to encode con-
trollers that reach a region via other regions rather than just
neighboring regions, as long as other specified constraints on
the system behavior hold. In this regard, our approach can
be thought of as a generalization of [13], [12].

IV. SYNTHESIS VIA ADAPTATION OF THE DISCRETE
ABSTRACTION

We now outline an approach for solving Problem 1 using
the encoding described above. Our approach generalizes to
any type of reachability-based motion planning technique,
including those using barrier certificates [16], differential
games [8], and LQR trees [19]. The only requirement is
the ability to compute an invariant set of continuous states
describing the verified bounds of the system evolution over
a finite time horizon under a given set of commands. The
framework naturally extends to systems whose continuous
dynamics are subject to disturbances or other types of
uncertainty.

We propose a three-step process for synthesis. The overall
solution is summarized in Figure 3. Starting from an initial
abstraction Sr, the first step involves performing synthesis
on a specification that is realizable with respect to Sr. We
next compute atomic controllers based on the synthesized
finite-state machine. If any part of the low-level synthesis is
not implementable, we update the discrete abstraction based
on information extracted from the reachability computations.
As reachability of nonlinear systems in general employs an
expensive set of computations, our approach avoids unnec-

Abstraction

Reactive Synthesis

Counter-strategy

Atomic Controller
Synthesis

Controller Library

ϕ

Sr

unrealizable

unimplementable

A

C,L

Fig. 3: Diagram of the procedure for adapting the discrete
abstraction.

essary re-computation of reachability on the state machine
transitions once the abstraction has been updated.

A. Atomic Controller Synthesis

We briefly review the process of synthesizing atomic
controllers to implement a finite-state machine as in Defi-
nition 4. The procedure, denoted by atomCtrl(A), takes as
its argument the discrete controller A, and returns an atomic
controller (κij) and a reach set (Lij) for each transition
s′ = δ(s, γX (s′)) in A.

While we may assume any reachability-based continuous
controller synthesis technique to compute atomic controllers,
in this work, we adopt the LQR trees approach of [19],
adapted for reactive synthesis as explained in [7] and briefly
summarized here. To satisfy Definition 4 for three transitions
of A, δi, i = 1, . . . , 3, we require that the controllers for each
transition be sequentially composable (there exists a valid
controller for δ2 and δ3 once the execution of the controller
for δ1 completes), and that controllers for transitions that
depend on the environment fulfill the stricter conditions for
reactive composability (in a given region, the system can
always invoke a controller to pursue either δ2 or δ3).

The computation of atomic controllers involves three
steps: (1) generating a nominal trajectory that satisfies the
boundary conditions of the transition, while avoiding obsta-
cles and satisfying the transition constraints (Πinv(πi, πaj));
(2) computing a feedback control law to achieve trajectory
stabilization; and (3) computing an invariant reach set given
the trajectory and controllers subject to the same con-
straints. The reach set is computed by solving a constrained
maximization problem (with mixed inequality and equality
constraints) using a sums-of-squares technique [20] to solve
for the quadratic Lyapunov functions.

B. Adaptation of Non-Deterministic Discrete Abstractions

During the process of constructing atomic controllers, we
make necessary changes to the initial abstraction based on
any partial results obtained from the reachability computa-
tions. We evaluate every transition that cannot be imple-
mented to determine whether the successor is unreachable
regardless of workspace constraints, or if the successor is
reachable but violates the invariant. In the former case, we
remove the failed successor from the abstraction. In the latter,
we incorporate the reachable successors as (possibly non-
deterministic) transitions. We formalize this process below.

1) Initialization of Sr: We require an initial discrete
abstraction and extract a strategy if one exists. Tthere is no
restriction to the form chosen for this initial guess except that
the specification ϕ′ is realizable on it. A reasonable choice
is a topology graph where, for each region, there is a unique
action that takes the robot to an adjacent region of its choice.
In such an abstraction, the invariant set for each transition is
assumed to be minimal; that is, Πinv(πi, πaj) = {πi, πj}.

2) Reachability-Driven Updates to Sr: A transition
δr(πj , πak) is said to have failed with respect to πi if a
controller κjk for a transition δr(πj , πak) composed with κij
for δr(πi, πaj) produces trajectories that either do not reach
the successor πj , or do not stay in the given invariant set

Πinv(πj , πak). In section IV-A, we briefly reviewed how we
apply sums-of-squares optimization to find controllers that
satisfy the constraints imposed by Πinv(πj , πak). Since our
aim is to maximize workspace coverage, we find controllers
that maximize the size of the reach sets subject to the
invariance constraints and the constraints for composability.
If we fail to satisfy these region-based constraints, we
remove the constraints imposed by the set Πinv(πj , πak), and
instead change our objective to finding the minimal reach set
subject to the dynamics and the composability conditions of
Definition 4. As we ultimately use the reach set to modify the
invariant set, the minimization is to ensure that we minimize
the size of this set (achieve a set with the fewest number
of completion propositions), thus reducing undesirable non-
determinism in the resulting abstraction.

In the case that construction of κjk has failed, we achieve
an as-tight-as-possible fit of Ljk to Lij(Tij) by solving the
following minimization problem:

min vol[Ljk] (5)
s.t. Ljk(Tjk) ⊂ rk,
Lij(Tij) ⊆ Ljk(t),Ljk(t) ⊂W, ∀t ∈ [0, Tjk).

where vol[Ljk] is defined as the volume of the reach set
Ljk, approximated as the sum of the computed volumes of
Ljk at uniformly-spaced time instants. Note that minimizing
vol[Ljk] in this way ensures that the set of successor
regions πk is kept as small as possible, while satisfying the
constraints on composition and the workspace bounds.

Our goal now is to use these reachability results to
compute appropriate modifications to the discrete abstraction.
We do so by maintaining a one-step memory of the starting
region for controller κij (in this case πi) whose composition
with κjk resulted in failure. The invariant set for the failed
transition (Πinv(πj , πak)) is then conditioned on the starting
region πi of controller κij , so that only those invariants
corresponding to executions starting from ri are adapted.
That is, if the robot starts in ri and activates the controller to
rj , but cannot progress from rj to rk without violating the
invariants given in the abstraction, we modify the abstraction
only for that path. On the other hand, if the robot starts at
r` and activates a controller to rj , and there is a controller
taking the robot to rk that satisfies the existing invariant, we
do not modify the abstraction. Because we are not modifying
the path r`, rj , rk, conditioning on the predecessor region
produces an abstraction that is strictly less conservative than
an unconditioned implementation where we modify that path.

We illustrate this point in Figure 4. Consider the construc-
tion of the controller κ52 in Figure 4a and 4b. In Figure 4a,
in order for L45 to be sequenced with L52, we must extend
the invariant ({π5, π2}) to include neighboring regions. In
Figure 4b, on the other hand, we can sequence L75 with
L52 with the existing invariant ({π5, π2}). Conditioning the
updated invariant on r4 allows the extended invariant to apply
only for the sequence r4, r5, r2. Note that we choose to
condition only on the one previous region, as it is compu-
tationally less expensive than conditioning on a sequence of
regions. This comes at the penalty of greater conservatism,
since it allows for more environment behaviors.

(a) (b)
Fig. 4: Illustration of two controllers sequenced together with
δr(π5, πa2) as the final transition in both cases. (a) a case
where the discrete abstraction is adapted to accommodate κ52

entering r6 and r3. (b) a case where the discrete abstraction
does not need to be adapted.

To this end, we introduce a new invariant mapping func-
tion Π̂inv : Xc × Y × Xc → 2Xc , that produces a set of
invariant regions for the transition δr(πj , πak), conditioned
on the starting region πi for the controller κij . We write
Π̂inv(πj , πak | πi) as being the invariant for the transition
δ(πj , πak) conditioned on πi.2

We update the abstraction in different ways depending
on the feasibility of the optimization problem in 5. If the
problem is infeasible, this means that we cannot sequence
together atomic controllers κij and κjk while guaranteeing
collision-free trajectories. In this case, we remove the en-
coding of the transition δr(πj , πak) from ϕ′. If the problem
is feasible, then there exists a sequence of controllers that
produce trajectories that do not leave the workspace, but
pass through regions other than those in Πinv(πj , πak).
In this case, we compute the updated invariant mapping
Π̂inv(πj , πak | πi) to be:

Π̂inv(πj , πak | πi) = {π` | ∀r` ⊂ R,
Ljk ∩ r` 6= ∅,Lij(Tij) ⊆ Ljk}. (6)

Example 1. Consider the two reach sets shown in Figure 4a,
and assume Sr corresponds to the topology graph. Observe
that the set L52 violates the topology graph constraint
r5 ∪ r2 (Πinv(π5, πa2) = {π5, π2}), but all trajectories from
L45(T45) are able to reach r2 when not subject to this
constraint. In this case, the minimal invariant that allows L52

to be sequentially composable with L45, is {π5, π6, π2, π3}.
We therefore obtain the update Π̂inv(π5, πa2 | π4) =
{π5, π6, π2, π3}.

3) Modifying the LTL Encoding: Whenever A is unimple-
mentable, atomCtrl(A) returns the completion and activation
propositions corresponding to each of the failed transitions.
These are collected in the set Pfail ⊆ Xc×Xc×Y , consisting
of the predecessor πi, the current region πj and the activation
πak. For failed transitions (πj , πak) originating from initial
states in A, we store (True, πj , πak) in Pfail since πi is
undefined initially.

In the case where, for some (πi, πj , πak) ∈ Pfail, the
optimization problem (5) is feasible, we incorporate the

2Note that we can generalize Π̂inv to account for N previous regions as
Π̂inv(πj , πak | πi1, πi2, . . . , πiN), however for complexity reasons we
consider only N = 1.

updated invariant Π̂inv(πj , πak | πi) into the abstraction.
Let ymi ∈ Y denote a memory proposition for region πi
that keeps memory of when the predecessor was πi . We
encode this behavior by adding to ψrtc (2) the following set
of conjuncts:∧

(πi,πj ,πak)∈Pfail

� ((©πi ∨ ymi) ∧©(πi ∨ πj)⇐⇒© ymi)

∧�

ymi ∧ πj ∧ πak =⇒
∨

π`∈Π̂inv(πj ,πak|πi)

©π`

 . (7)

According to the first conjunct, ymi is set upon entering πi
and reset upon exiting πi ∨πj . The second conjunct updates
the invariant regions that may be visited given the current
action and current and past completions.

In the case where, for some (πi, πj , πak) ∈ Pfail, (5)
is infeasible, we remove the transition entirely, since the
controller κij is blocking (it cannot reach πk). We update
the liveness condition in (4) to account for this, by removing
the possibility of completions occurring when the regions πi
and πj are visited in order, and the action πak is applied:

ψrg = � �
∨

πj∈Xc,ymi,πak∈Y
(πi,πj ,πak)6∈Pfail

(ymi ∧ πj ∧ πak ∧©(πk ∨ ¬πak)) .(8)

Note that (8) resembles (4), aside from the added conditions
on the disjunct: (πi, πj , πak) 6∈ Pfail.

Example 2. Consider again Example 1 and Figure 4a. In this
case, Pfail = {(π4, π5, πa2)}. We modify ψrtc by applying
the following as an additional set of conjuncts:

� ((©π4 ∨ ym4) ∧©(π4 ∨ π5) ⇐⇒ © ym4)

∧� (ym4 ∧ π5 ∧ πa2 =⇒ (©π5 ∨©π6 ∨©π3 ∨©π2)) .

Algorithm 1 Synthesizing controllers for a specification ϕ
under an initial abstraction Sr.

ϕ′ ← LTL encoding of Sr (2), (3), (4)
A ← realizable(ϕ′)
if realizable then

(C,L, Pfail)← atomCtrl(A)
5: while realizable and not implementable do

for all (πi, πj , πak) ∈ Pfail s.t. Π̂inv(πj , πak | πi) is
undefined do

Π̂inv ← (6)
feasible ← solution to problem (5)
if feasible then

10: ϕ′ ← (7)
else

ϕ′ ← (8)
end if

end for
15: A ← realizable(ϕ′)

(C,L, Pfail)← atomCtrl(A)
Compute Π̂inv

end while
if realizable and implementable then

20: return A, C, L
end if

end if
return failure

(a) (b)

(c) (d)

Fig. 5: Atomic controller synthesis results for the first three iterations of the algorithm. In subfigures (a)– (c), a partial
finite-state machine is shown, along with a partial set of reach sets for each controller. The states indicated in red correspond
to transitions in A that cannot be implemented at the low level (πak in Pfail), and the reach set highlighted red indicates
the associated reach set Lπi,πj

for (πi, πj , πak) = Pfail. (d) shows the implementation results after the first three iterations.

C. Iterative Procedure

We now discuss the main algorithm. The function
realizable(ϕ′) checks for realizability of ϕ′ on the initial
abstraction Sr, using the algorithm in [4] and returnsA if it is
realizable. The abstraction is updated iteratively (lines 5–18),
starting by synthesizing a strategy, then computing the atomic
controllers, and finally adapting the abstraction. The adapta-
tion steps take place in lines 6–14; in line 7, the invariant is
relaxed to include additional regions according to the reach
set computations. The result is implementable if controllers
are found; otherwise the abstraction is adapted accordingly.
The process is repeated until either ϕ is both realizable and
implementable, or the specification becomes unrealizable. At
each iteration, we re-start atomCtrl(A) re-using any partial
results of the implementation saved from the previous steps.
In so doing, we avoid the potentially costly step of re-
computing existing sets of verified controllers.

Given the number of possible environment proposition
combinations, n = 2|X\Xc|, and the number of region
propositions, m = |Y|, we compute invariants for m regions
up to n2 times under the assumption of one-step memory,
and add at most m memory propositions to the set Y . The
complexity of the algorithm is therefore O(mn2). This is
a very conservative upper-bound as, in our experience, far
fewer steps are needed. We note that the approach is sound
but not complete since, for nonlinear systems, reach sets are
computed using conservative overapproximations to the true
bounds of the system.

V. EXAMPLE

We have implemented this approach in a Matlab routine
that employs the slugs synthesis tool3 to perform realizability
checking. We demonstrate our results in an autonomous

3https://github.com/LTLMoP/slugs

Specification 1 Inspect the structure, marking any found
defects by remaining there.

1: Start in R1.
2: If no defects, visit targets T1, T2, T3, T4.
3: If defecti, visit Ti. (mark the target)
4: If defecti, never enter

∨
j,j 6=i Tj . (disambiguation)

5: Only defecti if in Ti or its immediate neighbors. (no false
alarms)

6: defecti ⇐⇒ ¬
∧

j,j 6=i defectj . (mutual exclusion)

inspection scenario that takes place in the workspace map
of Figure 6. The specification requires the robot to patrol
the targets T1, . . . , T4. If it sees a defect, it stops patrolling
and visits the target where the defect was sensed; defects
are treated as uncontrolled environment variables. The full
specification is listed in 1.

A three-state robot with dynamics described by a kine-
matic unicycle model is used to implement this task. The
unicycle model consists of three continuous states (x, y, θ),
two Cartesian displacements and an orientation angle. The
robot has the ability to turn but with limited turning radius
and is assumed to move at a fixed forward velocity. The
robot’s command input is its angular rate, ω.

Initializing Sr with a topology graph, finding imple-
mentable controllers required 7 calls to realizable(ϕ′) to
check realizability, and took 57 minutes to compute on a
laptop with an Intel Core i7 2.8GHz processor and 8GB
of RAM. Atomic controllers are constructed starting at the
initial condition R1, traversing each transition in the finite-
state machine until each transition has been addressed. The
first encountered unimplementable transition occurred in the
transition δr(T1, Ta1), where the finite-state machine requires
a self-loop transition at T1 (state Sa1 labeled red in Fig-
ure 5a). The minimization problem in (5) was feasible in this
case, and a sequentially-composable controller was computed

in which the robot is required to pass through R1 in order to
reach T1. In this case, the propositions Pfail = (S1, T1, Sa1)
(the reach set for δr(S1, T1) is labeled red) and the invariant
set is Πinv(T1, Sa1 | S1) = {R1, T1, S1}. The abstraction is
updated by introducing safety statements to ψrtc that require
both T1 and R1 be included in the invariant set for the tran-
sition δr(T1, Ta1) with respect to S1. Two separate iterations
of Algorithm 1 are shown in Figure 5b and Figure 5c. In both
cases, the abstraction is adapted in the neighborhood of T2,
due to the small size of the region. Similar to the first case,
these two cases are adapted by adding neighboring regions
as successors at T2 (states labeled red in the figure). With
the fully-adapted abstraction, the implementation produces
the trajectory shown in Figure 6.

The adaptation in this example required 5 additional
propositions. The time required to synthesize the specifica-
tion every time a memory proposition was added is shown in
Table I. Although the propositions introduce complexity in
the GR(1) synthesis process, this increase is small compared
with the overall time required to construct atomic controllers.

TABLE I: Synthesis time versus number of memory propo-
sitions.

mem props 0 1 2 3 4 5
time (sec) < 1.0 1.5 4.4 9.3 31.1 80.3

R1

T1 S1

T2

S2

T3

S3

T4

S4

Fig. 6: An execution for the case where a defect is found
in T2. The red portion of the trajectory indicates when
defect2 =True.

VI. CONCLUSIONS

In this paper, we have presented a synthesis approach
for dynamical systems that takes a specification and a
simplified robot abstraction and synthesizes a controller
that implements the specification on a robot with complex
dynamics. The approach allows a user to supply a suitable
guess at a discrete abstraction for the robot, updating this
abstraction in a local fashion if parts of the resulting strategy
are unimplementable. Our approach re-uses, to the extent
possible, the set of atomic controllers that have already been
constructed.

There are several opportunities for future work, including
providing feedback to the user when specifications become
unrealizable as a result of alterations made to the abstraction.
We plan to further explore how the choice of the initial
abstraction impacts the synthesis results, and its implications
on eventually realizing the specification using our method.
We also plan to extend our approach to controller synthesis
for continuous dynamics that are learned on-the-fly. Future

work will also be directed toward experimental testing, and
empirical comparison with other methods for abstraction and
synthesis.

REFERENCES

[1] E. Aydin Gol, M. Lazar, and C. Belta. Language-guided controller
synthesis for discrete-time linear systems. In Proceedings of the 15th
ACM International Conference on Hybrid Systems: Computation and
Control, pages 95–104. ACM, 2012.

[2] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based motion
planning with temporal goals. In IEEE International Conference on
Robotics and Automation (ICRA 2010), pages 2689–2696. IEEE, 2010.

[3] A. Bhatia, M.R. Maly, L.E. Kavraki, and M.Y. Vardi. Motion planning
with complex goals. Robotics Automation Magazine, IEEE, 18(3):55
–64, sept. 2011.

[4] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar.
Synthesis of reactive (1) designs. Journal of Computer and System
Sciences, 78(3):911–938, 2012.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[6] E.M. Clarke. Counterexample-guided abstraction refinement. In 10th
International Symposium on Temporal Representation and Reasoning
/ 4th International Conference on Temporal Logic (TIME-ICTL 2003),
page 7, 2003.

[7] J.A. DeCastro and H. Kress-Gazit. Synthesis of nonlinear continuous
controllers for verifiably-correct high-level, reactive behaviors. Inter-
national Journal of Robotics Research. Accepted.

[8] J. Ding, J. Gillula, H. Huang, M.P. Vitus, W. Zhang, and C.J. Tom-
lin. Hybrid systems in robotics: Toward reachability-based controller
design. IEEE Robotics & Automation Magazine, 18(3):33 – 43, Sept.
2011.

[9] G.E. Fainekos, S.G. Loizou, and G.J. Pappas. Translating temporal
logic to controller specifications. In Proc. of the 45th IEEE Conf. on
Decision and Control (CDC 2006), pages 899–904, 2006.

[10] H. Kress-Gazit, D.C. Conner, H. Choset, A.A. Rizzi, and G.J. Pappas.
Courteous cars. IEEE Robot. Automat. Mag., 15(1):30–38, 2008.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic
based reactive mission and motion planning. IEEE Transactions on
Robotics, 25(6):1370–1381, 2009.

[12] J. Liu and N. Ozay. Abstraction, discretization, and robustness in
temporal logic control of dynamical systems. In Proc. of the 17th
Int. Conf. on Hybrid Systems: Computation and Control (HSCC’14),
2014.

[13] J. Liu, N. Ozay, U. Topcu, and R.M. Murray. Synthesis of reactive
switching protocols from temporal logic specifications. IEEE Trans.
Automat. Contr., 58(7):1771–1785, 2013.

[14] M.R. Maly, M. Lahijanian, L.E. Kavraki, H. Kress-Gazit, and M.Y.
Vardi. Iterative temporal motion planning for hybrid systems in
partially unknown environments. In ACM International Conference
on Hybrid Systems: Computation and Control (HSCC), pages 353–
362, Philadelphia, PA, USA, 08/04/2013 2013. ACM, ACM.

[15] P. Nilsson and N. Ozay. Incremental synthesis of switching protocols
via abstraction refinement. In Proc. 53rd IEEE Conference on Decision
and Control (CDC) 2014, 2014.

[16] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In Proc. of the 4th Int. Workshop on Hybrid
Systems: Computation and Control (HSCC’04), pages 477–492, 2004.

[17] V. Raman, N. Piterman, C. Finucane, and H. Kress-Gazit. Timing
semantics for abstraction and execution of synthesized high-level robot
control. IEEE Transactions on Robotics, 2015.

[18] V. Raman, N. Piterman, and H. Kress-Gazit. Provably correct contin-
uous control for high-level robot behaviors with actions of arbitrary
execution durations. In IEEE International Conference on Robotics
and Automation, pages 4075–4081, Karlsruhe, Germany, 2013.

[19] R. Tedrake, I.R. Manchester, M. Tobenkin, and J.W. Roberts. Lqr-
trees: Feedback motion planning via sums-of-squares verification. I.
J. Robotic Res., 29(8):1038–1052, 2010.

[20] M.M. Tobenkin, I.R. Manchester, and R. Tedrake. Invariant funnels
around trajectories using sum-of-squares programming. In Proc. of
the 18th IFAC World Congress, 2011.

[21] E.M. Wolff, U. Topcu, and R.M. Murray. Automaton-guided controller
synthesis for nonlinear systems with temporal logic. In IROS, pages
4332–4339. IEEE, 2013.

[22] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
control for temporal logic specifications. In Proc. of the 13th Int. Conf.
on Hybrid Systems: Computation and Control (HSCC’10), 2010.

	Introduction
	Problem Formulation
	Dynamical System
	Linear Temporal Logic
	Discrete Abstractions
	Atomic Controllers
	Problem Statement

	Encoding Abstractions as LTL Formulas
	Synthesis via Adaptation of the Discrete Abstraction
	Atomic Controller Synthesis
	Adaptation of Non-Deterministic Discrete Abstractions
	Initialization of Sr
	Reachability-Driven Updates to Sr
	Modifying the LTL Encoding

	Iterative Procedure

	Example
	Conclusions
	References

